腾讯技术工程

腾讯万亿级 Elasticsearch 技术解密
腾讯万亿级 Elasticsearch 技术解密

Elasticsearch(ES)作为开源首选的分布式搜索分析引擎,通过一套系统轻松满足用户的日志实时分析、全文检索、结构化数据分析等多种需求,大幅降低大数据时代挖掘数据价值的成本。腾讯在公司内部丰富的场景中大规模使用 ES,同时联合 Elastic 公司在腾讯云上提供内核增强版的 ES 云服务,大规模、丰富多样的的使用场景推动着腾讯对原生 ES 进行持续的高可用、高性能、低成本优化。今天给大家分享近期在 Elastic 中国开发者大会上的演讲内容:腾讯万亿级 Elasticsearch 技术解密。

浅谈微视推荐系统中的特征工程
浅谈微视推荐系统中的特征工程

在推荐系统中,特征工程扮演着重要的角色。俗话说数据和特征决定了机器学习算法的上限,而模型、算法的选择和优化只是在不断逼近这个上限。特征工程的前提是收集足够多的数据,使用数据学习知识,从大量的原始数据中提取关键信息并表示为模型所需要的形式。本文主要说明微视,这种富媒体形态的短视频平台,是如何通过视频内容特征以及用户属性和行为数据,来精准预测用户对短视频的喜好的。

Bing搜索核心技术BitFunnel原理
Bing搜索核心技术BitFunnel原理

从90年代中期开始,人们普遍认识,对于内容索引来说,文件签名技术比反向链接效果更差。最近几年必应搜索引擎开发与部署了一套基于位分割的标签索引。本文根据论文《BitFunnel: Revisiting Signatures for Search》和Bing团队实践分享视频,对BitFunnel原理进行分析解读。

AI 到底是怎么「想」的?
AI 到底是怎么「想」的?

最近,Nature发表了一篇关于深度学习系统被欺骗的新闻文章,该文指出了对抗样本存在的广泛性和深度学习的脆弱性,以及几种可能的解决方法。安全平台部基础研究组自2017年来在对抗样本的生成及防守方法进行了深入研究,在这里团队通过在攻击方面的经验,分享我们对于防守对抗样本的一些思考,欢迎共同讨论。

机器学习模型可解释性的详尽介绍
机器学习模型可解释性的详尽介绍

模型可解释性方面的研究,在近两年的科研会议上成为关注热点,因为大家不仅仅满足于模型的效果,更对模型效果的原因产生更多的思考,这样的思考有助于模型和特征的优化,更能够帮助更好的理解模型本身和提升模型服务质量。本文对机器学习模型可解释性相关资料汇总survey。

腾讯游戏自研学术成果:基于图分割的网络表征学习初始化技术
腾讯游戏自研学术成果:基于图分割的网络表征学习初始化技术

本文介绍了 IEG 在网络表征学习方面的一个自研学术成果,最近被国际顶级学术会议 13th ACM International Conference on Web Search and Data Mining (WSDM 2020) 接收为学术长文。个人始终认为并且坚持研究与业务是可以相辅相成的。因此,该技术起源于对游戏业务优化的需求,升华于对技术细节的精益求精。