Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

量子计算凛冬将至,LeCun:现实冷酷,炒作太多

距离技术成熟永远「还差五年」?


量子计算,寒冬将至了?」

本周五,AI 先驱 Yann LeCun 的一番言论引发了人们的讨论。

图片

这位 AI 领域的著名学者表示,量子计算正在进入一个艰难时刻。与此同时,很多科技领域专家认为,目前的量子计算技术进步很多趋向于炒作,距离实际应用仍然很遥远。

对此,很多人同样持有悲观态度。

让我们看看 IEEE 的这篇文章是怎么说的:

量子计算机革命可能比许多人想象的更遥远、更有限。

一直以来,量子计算机都被期许为一种能够解决广泛问题的强大工具,可应用的方向包括金融建模、优化物流和加速机器学习量子计算公司往往会提出一些雄心勃勃的规划,称机器可能会在短短几年内对现实世界产生巨大影响。但如今,对该技术不切实际的期望遭到越来越多的抵制。

LeCun—— 量子比特,没那么神奇

图灵奖得主、Meta 人工智能研究负责人 Yann LeCun 最近给量子计算机的前景泼了一盆冷水。

在庆祝 Meta 基础人工智能研究团队成立 10 周年的媒体活动上,LeCun 表示量子计算这项技术是「一个令人着迷的科学话题」,但他不太相信「会真正制造出真正有用的量子计算机」。

虽然 LeCun 并不是量子计算领域的专家,但该领域的领军人物也发出了类似的警告。亚马逊网络服务量子硬件负责人 Oskar Painter 表示,目前该行业存在「大量炒作」,「很难从完全不切实际的情况中筛选出乐观的观点」。

有观点认为将信息传播到许多物理量子比特上,可以创建更强大的「逻辑量子比特」,但这可能需要每个逻辑量子比特多达 1000 个物理量子比特。一些人甚至认为量子纠错根本上就是不可能的。

总之,Oskar Painter 表示:以所需的规模和速度实现这些计划仍然是遥远的目标。他还指出:「考虑到实现能够在数千个量子比特上运行数十亿个门的容错量子计算机所面临的技术挑战,很难给出一个时间线,但我估计至少需要十年。」

微软 —— 量子计算,非常消耗算力

不仅仅是时间的问题。今年 5 月,微软量子计算领导者 Matthias Troyer 在《Communications of the ACM》上合著发表了一篇论文,表明量子计算机可以提供的有意义应用数量比人们想象的要有限。

「我们发现过去十年来人们提出的许多想法都行不通,并且我们发现原因非常简单」,Matthias Troyer 说道。

量子计算机主要的前景是能够比传统计算机更快地解决问题,但有关具体能快多少,人们的思考却各不相同。Troyer 表示,在两种应用中,量子算法似乎可以提供指数级的加速。一是对大数进行因式分解,这使得破解互联网所依赖的公钥加密成为可能。另一个是模拟量子系统,它可以在化学和材料科学中获得应用。

量子算法已经被提出来解决一系列其他问题,包括优化、药物设计和流体动力学。但研究中声称的计算加速并不总是成功 —— 有时相当于二次增益,这意味着量子算法解决问题所需的时间是其经典算法所用时间的平方根。Troyer 表示,这些增益很快就会因为量子计算所需的大量计算消耗所抵消。操作量子比特比开关晶体管要复杂得多,因此速度要慢几个数量级。

这意味着,对于较小的问题,经典计算机总是会更快,而量子计算机获得领先的点取决于经典算法的复杂性扩展的速度。

Troyer 和他的同事将单块英伟达 A100 GPU 与虚构的未来容错量子计算机进行了比较,该计算机具有一万个「逻辑量子比特」,并且 gate 时间比当今的设备快得多。
研究人员发现,具有二次加速的量子算法必须运行几个世纪,甚至几千年,才能在大到有用的问题上超越经典算法。

另一个重大障碍是数据带宽。量子比特缓慢的运行速度从根本上限制了量子计算机输入和输出经典数据的速度。Troyer 表示,即使在乐观的未来场景中,这也可能比传统计算机慢数千或数百万倍。这意味着在可预见的未来,像机器学习或搜索数据库这样的数据密集型应用程序几乎肯定是遥不可及的。

Troyer 表示,当前的结论是量子计算机只能以指数级速度真正解决小数据问题。「其余的都是美丽的理论,但并不实用,」他补充道。

Troyer 表示,这篇论文并没有对量子计算研究社区产生太大影响,但许多微软客户很高兴能够了解量子计算的实际应用。他说,他们已经看到许多公司缩小甚至关闭了量子计算团队,包括金融和生命科学领域的公司。

应用范围可能有限

本月早些时候,来自量子计算初创公司 QuEra 和哈佛大学的研究人员证明他们可以使用 280 个量子比特处理器生成 48 个逻辑量子比特,远远超过之前的实验所能达到的水平。

QuEra CMO Yuval Boger 强调该实验是实验室演示,但该结果已促使一些人重新评估容错量子计算的时间尺度。

但与此同时,他也注意到一些公司悄悄地将资源从量子计算转移出去的趋势。他认为这在一定程度上是由于大型语言模型出现以来人们对人工智能的兴趣日益浓厚所致。
即使在量子计算机看起来最有前途的领域,其应用范围也可能比最初希望的要窄。例如,近年来的研究论文表明,量子化学中只有有限数量的问题可能受益于量子加速。

德国制药巨头默克集团数字创新全球主管 Philipp Harbach 表示,同样重要的是要记住,许多公司已经拥有在经典硬件上运行的成熟且高效的量子化学工作流程。

他表示:「在公众看来,量子计算机似乎能够实现目前无法实现的目标,这是不准确的。首先,它将加速现有任务的速度,而不是引入完全颠覆性的新应用领域。所以我们正在评估这里的差异。」

Harbach 的团队大约六年来一直在研究量子计算与制药等工作的相关性。虽然 NISQ 设备可能用于解决某些高度专业化的问题,但他们得出的结论是,在实现容错之前,量子计算不会对工业产生重大影响。Harbach 表示,即便如此,这种影响的变革性实际上取决于公司正在开发的具体用例和产品。

量子计算机擅长为经典计算机难以解决的大规模问题提供准确的解决方案。这对于某些应用非常有用,例如设计新催化剂。但在默克的实践中,人们感兴趣的大多数化学问题都涉及快速筛选大量候选分子。

「量子化学中的大多数问题都不会呈指数级扩展,近似值就足够了,」Harbach 表示。「它们是易于解决的问题,你只需要通过增加系统规模来使它们更快。」

尽管如此,微软的 Troyer 表示,我们仍然有理由对量子计算感到乐观 —— 即使量子计算机只能解决化学和材料科学等领域的有限问题,其影响仍然可能改变游戏规则。「我们谈论的是石器时代、青铜时代、铁器时代和硅时代之间的代际区别,所以材料对人类有着巨大的影响,」他说道。

Troyer 认为,提出一些怀疑的目的不是为了减少人们对该领域的兴趣,而是为了确保研究人员专注于量子计算最有前途、最有可能产生影响的应用。

或许在 Yann LeCun 的推特下,有人的一条回应可以支持这样的说法。

图片

谷歌市场负责人 Guillaume Roques 表示:如今大语言模型的基础 —— 神经网络的首次实现是由 Marvin Minsky 和 Dean Edmond(当时是哈佛大学的学生)于 1950 年提出的。

在 1957 年,Frank Rosenblatt 创建了感知器,这是一种以软件形式实现的单层神经网络,返回二进制结果(0 或 1)作为输出。不幸的是,多层网络直到几十年后才会出现,因为人工智能在研究方面经历了一个漫长的「冬天」,因为感知器受到了 Minsky 的批评,而且 James Lighthill 关于人工智能的非常悲观的报告把有关人工智能的很多研究多「埋葬」了几年。

因此,希望量子计算不会迎来冬天,这样我们就能看到它对我们一生的影响……

原文链接:
https://spectrum.ieee.org/quantum-computing-skeptics
产业量子计算Yann LeCun
相关数据
机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

感知技术

知觉或感知是外界刺激作用于感官时,脑对外界的整体的看法和理解,为我们对外界的感官信息进行组织和解释。在认知科学中,也可看作一组程序,包括获取信息、理解信息、筛选信息、组织信息。与感觉不同,知觉反映的是由对象的各样属性及关系构成的整体。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

规划技术

人工智能领域的「规划」通常是指智能体执行的任务/动作的自动规划和调度,其目的是进行资源的优化。常见的规划方法包括经典规划(Classical Planning)、分层任务网络(HTN)和 logistics 规划。

数据库技术

数据库,简而言之可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据运行新增、截取、更新、删除等操作。 所谓“数据库”系以一定方式储存在一起、能予多个用户共享、具有尽可能小的冗余度、与应用程序彼此独立的数据集合。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

逻辑技术

人工智能领域用逻辑来理解智能推理问题;它可以提供用于分析编程语言的技术,也可用作分析、表征知识或编程的工具。目前人们常用的逻辑分支有命题逻辑(Propositional Logic )以及一阶逻辑(FOL)等谓词逻辑。

因式分解技术

在数学中,把一个数学因子(比如数字,多项式,或矩阵)分解其他数学因子的乘积。比如:整数15可以分解成两个质数3和5的乘积,一个多项式x^2 -4 可被因式分解为(x+2)(x-2)。

感知器技术

感知器是Frank Rosenblatt在1957年就职于Cornell航空实验室时所发明的一种人工神经网络。它可以被视为一种最简单形式的前馈神经网络,是一种二元线性分类器。 Frank Rosenblatt给出了相应的感知机学习算法,常用的有感知机学习、最小二乘法和梯度下降法。

量子计算技术

量子计算结合了过去半个世纪以来两个最大的技术变革:信息技术和量子力学。如果我们使用量子力学的规则替换二进制逻辑来计算,某些难以攻克的计算任务将得到解决。追求通用量子计算机的一个重要目标是确定当前经典计算机无法承载的最小复杂度的计算任务。该交叉点被称为「量子霸权」边界,是在通向更强大和有用的计算技术的关键一步。

语言模型技术

统计式的语言模型是借由一个几率分布,而指派几率给字词所组成的字串。语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。

推荐文章
暂无评论
暂无评论~