Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

港科大&MSRA新研究:关于图像到图像转换,Finetuning is all you need

自然语言处理领域,网络微调已经取得了许多进展,现在这一思想延展到了图像到图像转换的领域。

图片

许多内容制作项目需要将简单的草图转换为逼真的图片,这就涉及图像到图像的转换(image-to-image translation),它使用深度生成模型学习给定输入的自然图片的条件分布。

图像到图像转换的基本概念是利用预训练的神经网络来捕捉自然图片流形(manifold)。图像转换类似于遍历流形并定位可行的输入语义点。系统使用许多图片对合成网络进行预训练,以从其潜在空间的任何采样中提供可靠的输出。通过预训练的合成网络,下游训练将用户输入调整为模型的潜在表征。

多年来,我们已经看到许多特定于任务的方法达到了 SOTA 水平,但目前的解决方案还是难以创建用于实际使用的高保真图片。
图片
在最近的一篇论文中,香港科技大学和微软亚洲研究院的研究者认为,对于图像到图像的转换,预训练才是 All you need。以往方法需要专门的架构设计,并从头开始训练单个转换模型,因而难以高质量地生成复杂场景,尤其是在配对训练数据不充足的情况下。

因此,研究者将每个图像到图像的转换问题视为下游任务,并引入了一个简单通用框架,该框架采用预训练的扩散模型来适应各种图像到图像的转换。他们将提出的预训练图像到图像转换模型称为 PITI(pretraining-based image-to-image translation)。此外,研究者还提出用对抗训练来增强扩散模型训练中的纹理合成,并与归一化指导采样结合以提升生成质量。

最后,研究者在 ADE20K、COCO-Stuff 和 DIODE 等具有挑战性的基准上对各种任务进行了广泛的实证比较,表明 PITI 合成的图像显示出了前所未有的真实感和忠实度。
图片
  • 论文链接:https://arxiv.org/pdf/2205.12952.pdf
  • 项目主页:https://tengfei-wang.github.io/PITI/index.html

GAN 已死,扩散模型永存

作者没有使用在特定领域表现最佳的 GAN,而是使用了扩散模型,合成了广泛多样的图片。其次,它应该从两种类型的潜在代码中生成图片:一种描述视觉语义,另一种针对图像波动进行调整。语义、低维潜在对于下游任务至关重要。否则,就不可能将模态输入转换为复杂的潜在空间。鉴于此,他们使用 GLIDE 作为预训练的生成先验,这是一种可以生成不同图片的数据驱动模型。由于 GLIDE 使用了潜在的文本,它允许语义潜在空间。

扩散和基于分数的方法表现出跨基准的生成质量。在类条件 ImageNet 上,这些模型在视觉质量和采样多样性方面与基于 GAN 的方法相媲美。最近,用大规模文本图像配对训练的扩散模型显示出惊人的能力。训练有素的扩散模型可以为合成提供通用的生成先验。
图片
框架

作者可以使用前置(pretext)任务对大量数据进行预训练,并开发一个非常有意义的潜在空间来预测图片统计。

对于下游任务,他们有条件地微调语义空间以映射特定于任务的环境。该机器根据预先训练的信息创建可信的视觉效果。

作者建议使用语义输入对扩散模型进行预训练。他们使用文本条件、图像训练的 GLIDE 模型。Transformer 网络对文本输入进行编码,并为扩散模型输出 token。按照计划,文本嵌入空间是有意义的。
图片
上图是作者的作品。与从头开始的技术相比,预训练模型提高了图片质量和多样性。由于 COCO 数据集具有众多类别和组合,因此基本方法无法通过引人注目的架构提供美观的结果。他们的方法可以为困难的场景创建具有精确语义的丰富细节。图片展示了他们方法的多功能性。

实验及影响

表 1 显示,该研究所提方法性能始终优于其他模型。与较为领先的 OASIS 相比,在掩码到图像合成方面,PITI 在 FID 方面获得了显著的改进。此外,该方法在草图到图像和几何到图像合成任务中也显示出良好的性能。
图片
图 3 展示了该研究在不同任务上的可视化结果。实验可得,与从头开始训练的方法相比,预训练模型显著提高了生成图像的质量和多样性。该研究所用方法可以产生生动的细节和正确的语义,即使是具有挑战性的生成任务。
图片
该研究还在 Amazon Mechanical Turk 上的 COCO-Stuff 上进行了一项关于掩码到图像合成的用户研究,获得了 20 名参与者的 3000 票。参与者一次会得到两张图片,并被要求选择一张更真实的进行投票。如表 2 所示,所建议的方法在很大程度上优于从零开始的模型和其他基线。
图片
条件图像合成可创建符合条件的高质量图片。计算机视觉和图形学领域使用它来创建和操作信息。大规模预训练改进了图片分类、对象识别和语义分割。未知的是大规模预训练是否有利于一般生成任务。

能源使用和碳排放是图片预训练的关键问题。预训练是耗能的,但只需要一次。条件微调让下游任务可以使用相同的预训练模型。预训练允许用更少的训练数据训练生成模型,当数据由于隐私问题或昂贵的注释成本而受到限制时,可以提升图像合成效果。

原文链接:https://medium.com/mlearning-ai/finetuning-is-all-you-need-d1b8747a7a98#7015
理论文本转图像
相关数据
Amazon机构

亚马逊(英语:Amazon.com Inc.,NASDAQ:AMZN)是一家总部位于美国西雅图的跨国电子商务企业,业务起始于线上书店,不久之后商品走向多元化。目前是全球最大的互联网线上零售商之一,也是美国《财富》杂志2016年评选的全球最大500家公司的排行榜中的第44名。

https://www.amazon.com/
相关技术
微软亚洲研究院机构

微软亚洲研究院于1998年在北京成立,是微软公司在亚太地区设立的基础及应用研究机构,也是微软在美国本土以外规模最大的一个研究院。微软亚洲研究院从事自然用户界面、智能多媒体、大数据与知识挖掘、人工智能、云和边缘计算、计算机科学基础等领域的研究,致力于推动计算机科学前沿发展,着眼下一代革命性技术的创新,助力微软实现长远发展战略。

www.msra.cn
基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

图像转换技术

图像到图像的转换是从一个域获取图像并对其进行转换以使它们具有来自另一个域的图像的样式(或特征)的任务。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

深度生成模型技术

深度生成模型基本都是以某种方式寻找并表达(多变量)数据的概率分布。有基于无向图模型(马尔可夫模型)的联合概率分布模型,另外就是基于有向图模型(贝叶斯模型)的条件概率分布。前者的模型是构建隐含层(latent)和显示层(visible)的联合概率,然后去采样。基于有向图的则是寻找latent和visible之间的条件概率分布,也就是给定一个随机采样的隐含层,模型可以生成数据。 生成模型的训练是一个非监督过程,输入只需要无标签的数据。除了可以生成数据,还可以用于半监督的学习。比如,先利用大量无标签数据训练好模型,然后利用模型去提取数据特征(即从数据层到隐含层的编码过程),之后用数据特征结合标签去训练最终的网络模型。另一种方法是利用生成模型网络中的参数去初始化监督训练中的网络模型,当然,两个模型需要结构一致。

映射技术

映射指的是具有某种特殊结构的函数,或泛指类函数思想的范畴论中的态射。 逻辑和图论中也有一些不太常规的用法。其数学定义为:两个非空集合A与B间存在着对应关系f,而且对于A中的每一个元素x,B中总有有唯一的一个元素y与它对应,就这种对应为从A到B的映射,记作f:A→B。其中,y称为元素x在映射f下的象,记作:y=f(x)。x称为y关于映射f的原象*。*集合A中所有元素的象的集合称为映射f的值域,记作f(A)。同样的,在机器学习中,映射就是输入与输出之间的对应关系。

对抗训练技术

对抗训练涉及两个模型的联合训练:一个模型是生成器,学习生成假样本,目标是骗过另一个模型;这另一个模型是判别器,通过对比真实数据学习判别生成器生成样本的真伪,目标是不要被骗。一般而言,两者的目标函数是相反的。

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

语义分割技术

语义分割,简单来说就是给定一张图片,对图片中的每一个像素点进行分类。图像语义分割是AI领域中一个重要的分支,是机器视觉技术中关于图像理解的重要一环。

生成模型技术

在概率统计理论中, 生成模型是指能够随机生成观测数据的模型,尤其是在给定某些隐含参数的条件下。 它给观测值和标注数据序列指定一个联合概率分布。 在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。

推荐文章
暂无评论
暂无评论~