Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

CVPR 2024 | 擅长处理复杂场景和语言表达,清华&博世提出全新实例分割网络架构MagNet

图片

AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com。

指代分割 (Referring Image Segmentation,RIS) 是一项极具挑战性的多模态任务,要求算法能够同时理解精细的人类语言和视觉图像信息,并将图像中句子所指代的物体进行像素级别的分割。RIS 技术的突破有望在人机交互、图像编辑、自动驾驶等诸多领域带来革命性变革。它能够极大地提升人机协作的效率和体验。尽管目前最先进的 RIS 算法已经取得了显著进展,但仍然面临着模态差异 (modality gap) 的问题,即图像和文本特征的分布并未完全对齐。这一问题在处理复杂的指代语言表达和罕见语境时尤为突出。

图片

  图 1:细粒度语言 - 图像对齐能力对 RIS 的重要性示意图。红色掩码是目前最先进的 RIS 算法之一 LAVT 的预测结果,而黄色虚线框则是正确的标注。

目前的 RIS 研究主要集中在设计新颖的损失函数或引入创新的网络架构 / 模块,以增强语言 - 图像的分布对齐。尽管取得了显著进展,但仍存在两个根本性问题,导致它们在细粒度语言 - 图像对齐(Fine-grained Visual Grounding)方面能力不足:

1. 这些方法主要依赖于句子级别的语言特征进行语言 - 图像对齐,导致它们在文字级别的语言 - 图像对齐能力较为薄弱。
2. 这些方法在训练过程中往往缺乏显式的监督信号,无法有效地教会模型进行细粒度对齐,导致它们在处理复杂的指代语言时表现不佳。

图片

                                 图 2:现有算法的缺陷

在近期一篇 CVPR 2024 工作中,来自清华大学自动化系和博世中央研究院的联合研究团队设计了一种新的辅助任务 Mask Grounding。通过随机掩码部分文本词汇,并让算法学习预测其真实身份,这一任务旨在显式地教会模型学习文本与视觉对象之间的细粒度对应关系。除此之外,他们还提出了一个新颖的跨模态对齐模块(Cross-modal Alignment Module)和一个新颖的跨模态对齐损失函数 (Cross-modal Alignment Loss),来进一步全面缩小语言和图像之间的模态差距。基于这些技术,他们设计了一个全新的实例分割网络架构 Mask-grounded Network (MagNet)。

图片

  • 论文标题:Mask Grounding for Referring Image Segmentation
  • 论文地址:https://arxiv.org/abs/2312.12198

在 RefCOCO、RefCOCO + 和 G-Ref 数据集上,MagNet 大幅超越了所有之前最优的算法,在整体交并比 (oIoU) 这项核心指标上显著提升了 2.48 个百分点。可视化结果也证实,MagNet 在处理复杂场景和语言表达时具有出色的表现。

方法

MagNet 由 3 个独立互补的模块组成,分别为 Mask Grounding,Cross-modal Alignment Module 和 Cross-modal Alignment Loss。

1.Mask Grounding

图片

                              图 3:Mask Grounding 流程图

如图 3 所示,在给定输入图像、对应的指代表达以及分割掩码的情况下,作者随机选取句子中的某些词汇,并将其替换为一个特殊的可学习掩码 token。然后,训练模型来预测这些被替换词汇的实际身份。通过成功预测被掩码 token 的身份,模型能够理解文本中的哪些词汇对应于图像的哪些部分,从而在此过程中学习细粒度语言 - 图像对齐能力。为了执行这一辅助任务,首先提取掩码区域的中心坐标,并将其传递给一个 2 层 MLP,以编码分割掩码的特征。同时,使用线性层将语言特征映射到与图像特征相同的维度。然后,使用提出的掩码 token 预测器联合处理这些特征,并使用注意力机制模块来进行掩码 token 预测。虽然 Mask Grounding 需要通过语言编码器进行额外的前向传递来处理被掩码的表达式,但由于语言编码器非常小,整体计算成本几乎可以忽略不计。

2.Cross-modal Alignment Module (CAM)

图片

                                 图 4:Cross-modal Alignment Module 结构图

如图 4 所示,为了进一步提升模型性能,作者还提出了跨模态对齐模块(CAM),通过在执行语言 - 图像融合之前将全局上下文先验注入图像特征来增强语言 - 图像对齐效果。CAM 首先使用不同窗口大小的池化操作生成 K 个不同金字塔尺度的特征图。然后,每个特征图通过一个 3 层 MLP 以更好地提取全局信息,并与另一模态进行交叉注意力操作。接下来,所有输出特征通过双线性插值上采样到原始特征图尺寸,并在通道维度上拼接。随后,使用一个 2 层 MLP 将拼接后的特征通道数减少回原始维度。为了防止多模态信号淹没原始信号,使用一个带有 Tanh 非线性的门控单元来调制最终输出。最后,这个门控后的特征被加回到输入特征中,然后传递给图像或语言编码器的下一阶段。在作者的实现中,CAM 被加到图像和语言编码器的每个阶段末尾。

3.Cross-modal Alignment Loss (CAL)

图片

                                             图 5:Cross-modal Alignment Loss 公式

为了监督模型对齐语言和图像特征,作者提出了一种新颖的跨模态对齐损失函数 (CAL)。图五展示了该损失函数的数学公式。与之前工作不同,CAL 同时考虑了像素到像素 (Pixel-to-Pixel,P2P) 和像素到文本 (Pixel-to-Text,P2T) 之间的对齐。精确的像素到像素对齐能确保模型能分割输出具有准确形状和边界的分割掩码,而精确的像素到文本对齐能使模型能够正确地将文本描述与其匹配的图像区域进行合理的关联。

实验

在表 1 中,作者使用 oIoU 指标评估 MagNet,并与现有最先进的算法做性能比较。测试数据为 RefCOCO、RefCOCO + 和 G-Ref。在单一和多个 / 额外数据集的设置下,MagNet 的性能在这些数据集上全都是 SOTA。

图片

                                        表 1:实验结果

可视化结果图片
                               图 6:MagNet 可视化结果

在图 6 中,我们可以看到,MagNet 的可视化结果也非常突出,在许多困难的场景中都比对比基准 LAVT 强很多。

小结

这篇文章深入探讨了指代分割(RIS)领域的挑战和当前存在的问题,特别是在细粒度语言 - 图像对齐方面的不足。针对这些问题,清华大学和博世中央研究院的研究人员提出了一种新的方法,名为 MagNet,通过引入辅助任务 Mask Grounding、跨模态对齐模块和跨模态对齐损失函数,全面提升了语言和图像之间的对齐效果。实验证明,MagNet 在 RefCOCO、RefCOCO + 和 G-Ref 数据集上均取得了显著优异的性能,超越了之前最先进的算法,表现出了强大的泛化能力。可视化结果也证实了 MagNet 在处理复杂场景和语言表达时的优越性。这一研究为指代分割领域的进一步发展提供了有益的启示,有望推动该领域取得更大的突破。

团队介绍

此论文来源于清华大学自动化系(https://www.au.tsinghua.edu.cn)和博世中央研究院(https://www.bosch.com/research/)。其中论文一作庄荣贤为清华大学在读博士生,并在博世中央研究院实习;项目负责人为邱旭冲博士,任博世中央研究院资深研发科学家;通讯作者为清华大学自动化系黄高教授。
工程CVPR 2024指代分割
相关数据
清华大学机构

清华大学(Tsinghua University),简称“清华”,由中华人民共和国教育部直属,中央直管副部级建制,位列“211工程”、“985工程”、“世界一流大学和一流学科”,入选“基础学科拔尖学生培养试验计划”、“高等学校创新能力提升计划”、“高等学校学科创新引智计划”,为九校联盟、中国大学校长联谊会、东亚研究型大学协会、亚洲大学联盟、环太平洋大学联盟、清华—剑桥—MIT低碳大学联盟成员,被誉为“红色工程师的摇篮”。 清华大学的前身清华学堂始建于1911年,因水木清华而得名,是清政府设立的留美预备学校,其建校的资金源于1908年美国退还的部分庚子赔款。1912年更名为清华学校。1928年更名为国立清华大学。1937年抗日战争全面爆发后南迁长沙,与北京大学、南开大学组建国立长沙临时大学,1938年迁至昆明改名为国立西南联合大学。1946年迁回清华园。1949年中华人民共和国成立,清华大学进入了新的发展阶段。1952年全国高等学校院系调整后成为多科性工业大学。1978年以来逐步恢复和发展为综合性的研究型大学。

http://www.tsinghua.edu.cn/
相关技术
池化技术

池化(Pooling)是卷积神经网络中的一个重要的概念,它实际上是一种形式的降采样。有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见的。它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值。直觉上,这种机制能够有效的原因在于,在发现一个特征之后,它的精确位置远不及它和其他特征的相对位置的关系重要。池化层会不断地减小数据的空间大小,因此参数的数量和计算量也会下降,这在一定程度上也控制了过拟合。通常来说,CNN的卷积层之间都会周期性地插入池化层。

基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

损失函数技术

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学等领域,损失函数或成本函数是将一或多个变量的一个事件或值映射为可以直观地表示某种与之相关“成本”的实数的函数。

注意力机制技术

我们可以粗略地把神经注意机制类比成一个可以专注于输入内容的某一子集(或特征)的神经网络. 注意力机制最早是由 DeepMind 为图像分类提出的,这让「神经网络在执行预测任务时可以更多关注输入中的相关部分,更少关注不相关的部分」。当解码器生成一个用于构成目标句子的词时,源句子中仅有少部分是相关的;因此,可以应用一个基于内容的注意力机制来根据源句子动态地生成一个(加权的)语境向量(context vector), 然后网络会根据这个语境向量而不是某个固定长度的向量来预测词。

映射技术

映射指的是具有某种特殊结构的函数,或泛指类函数思想的范畴论中的态射。 逻辑和图论中也有一些不太常规的用法。其数学定义为:两个非空集合A与B间存在着对应关系f,而且对于A中的每一个元素x,B中总有有唯一的一个元素y与它对应,就这种对应为从A到B的映射,记作f:A→B。其中,y称为元素x在映射f下的象,记作:y=f(x)。x称为y关于映射f的原象*。*集合A中所有元素的象的集合称为映射f的值域,记作f(A)。同样的,在机器学习中,映射就是输入与输出之间的对应关系。

双线性插值技术

双线性插值,又称为双线性内插。在数学上,双线性插值是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值。 双线性插值作为数值分析中的一种插值算法,广泛应用在信号处理,数字图像和视频处理等方面。

上采样技术

在数字信号处理中,上采样、扩展和内插是与多速率数字信号处理系统中的重采样过程相关的术语。 上采样可以与扩展同义,也可以描述整个扩展和过滤(插值)过程。

人机交互技术

人机交互,是一门研究系统与用户之间的交互关系的学问。系统可以是各种各样的机器,也可以是计算机化的系统和软件。人机交互界面通常是指用户可见的部分。用户通过人机交互界面与系统交流,并进行操作。小如收音机的播放按键,大至飞机上的仪表板、或是发电厂的控制室。

实例分割技术

实例分割是检测和描绘出现在图像中的每个不同目标物体的任务。

机器之心机构

机器之心,成立于2014年,是国内最具影响力、最专业、唯一用于国际品牌的人工智能信息服务与产业服务平台。目前机器之心已经建立起涵盖媒体、数据、活动、研究及咨询、线下物理空间于一体的业务体系,为各类人工智能从业者提供综合信息服务和产业服务。

https://www.jiqizhixin.com/
推荐文章
暂无评论
暂无评论~