通用人工智能

通用人工智能(AGI)是具有一般人类智慧,可以执行人类能够执行的任何智力任务的机器智能。通用人工智能是一些人工智能研究的主要目标,也是科幻小说和未来研究中的共同话题。一些研究人员将通用人工智能称为强AI(strong AI)或者完全AI(full AI),或称机器具有执行通用智能行为(general intelligent action)的能力。与弱AI(weak AI)相比,强AI可以尝试执行全方位的人类认知能力。

来源:wikipedia
简介

通用人工智能(AGI)是具有一般人类智慧,可以执行人类能够执行的任何智力任务的机器智能。通用人工智能是一些人工智能研究的主要目标,也是科幻小说和未来研究中的共同话题。一些研究人员将通用人工智能称为强AI(strong AI)或者完全AI(full AI),或称机器具有执行通用智能行为(general intelligent action)的能力。与弱AI(weak AI)相比,强AI可以尝试执行全方位的人类认知能力。

人们提出过很多通用智能的定义(例如能够通过图灵测试),但是没有一个定义能够得到所有人的认同。然而,人工智能的研究者们普遍同意,以下特质是一个通用人工智能所必须要拥有的:

  • 自动推理,使用一些策略来解决问题,在不确定性的环境中作出决策
  • 知识表示,包括常识知识库
  • 自动规划
  • 学习
  • 使用自然语言进行沟通
  • 以及,整合以上这些手段来达到同一个的目标

还有一些重要的能力,包括机器知觉(例如计算机视觉),以及在智能行为的世界中行动的能力(例如机器人移动自身和其他物体的能力)。它可能包括探知与回避危险的能力。 许多研究智能的交叉领域(例如认知科学、机器智能和决策)试图强调一些额外的特征,例如想象力(不依靠预设而建构精神影像与概念的能力)以及自主性。基于计算机系统中的确已经存在许多这样的能力,例如计算创造性、自动推理、决策支持系统、机器人、进化计算、智能代理,然而这些系统并未达到人类的水平。

测试人类水平的通用人工智能具有以下几种方式:

  • 图灵测试(图灵提出):一名人类参与者与一台机器和一名人类进行对话,参与者看不见目前对话的是人类还是机器。如果在很长一段时间内,参与者无法判断与他对话的是人类还是机器,那么机器就通过了测试。
  • 咖啡测试(沃兹尼亚克提出):一台机器需要具备在普通的美国家庭中弄清楚如何煮咖啡的能力:找到咖啡机,找到咖啡,加水,找到一个马克杯,按下正确的按钮开始煮咖啡。
  • 机器人大学学生考试(哥兹柔提出):一台机器就读于一所大学,选择并通过和人类相同的课程,最终取得学位。
  • 就业测试(尼尔森提出):机器从事一份经济上起着重要作用的工作,在工作中的表现至少和人类一样好。
  • 扁平家具测试(Tony Severyns提出):需要一台机器来打开和组装一件扁平家具。它必须阅读说明并按照描述组装项目,正确安装所有部分。

通用人工智能也引发起一连串哲学争论,例如如果一台机器能完全理解语言并回答问题的,这台机器是不是有思维的?

关于通用人工智能的争论,不同于更广义的一元论和二元论的争论。其争论要点是:如果一台机器的唯一工作原理就是转换编码数据,那么这台机器是不是有思维的?哲学家希尔勒认为这是不可能的。他举了著名的中文房间(Chinese room)的例子来说明,如果机器仅仅是转换数据,而数据本身是对某些事情的一种编码表现,那么在不理解这一编码和实际事情之间的对应关系的前提下,机器不可能对其处理的数据有任何理解。基于这一论点,希尔勒认为即使有机器通过了图灵测试,也不一定说明机器就真的像人一样有思维和意识。

关于这个争论,也有哲学家持不同的观点。丹尼尔丹尼特在其著作《意识的阐释》(Consciousness Explained)里认为,人也不过是一台有灵魂的机器而已,为什么我们认为:“人可以有智能,而普通机器就不能”呢?他认为像上述的数据转换机器是有可能有思维和意识的。

通用人工智能/强人工智能虽说是人工智能研究的最终目标,可是就现状来看,弱人工智能仍是研究发展的重点。通用人工智能的实现,离不开机器与意识、感性、知识和自觉等人类特征的相互连结,目前还有很长的路要走。

描述和图片来源:

  1. https://en.wikipedia.org/wiki/Artificial_general_intelligence
  2. Goertzel, B. (2007). Artificial general intelligence (Vol. 2). C. Pennachin (Ed.). New York: Springer. https://pdfs.semanticscholar.org/782a/ceec18dd97923ea8d1eb93c326133ba980c2.pdf

发展历史

现代人工智能研究开始于1950年代中期。最早的一批人工智能研究者相信强人工智能不仅是可能的,而且将在几十年内出现。人工智能先驱Herbert Simon在1965年写道:“在20年之内,机器就能够做到一个人能做到的任何事。” 启发这一预言的是斯坦利·库布里克和亚瑟·查理斯·克拉克在《2001太空漫遊》(2001: A Space Odyssey)创作的角色,HAL 9000。当时的人工智能研究者确信,能够在2001年制造出这样的机器。值得一提的是,人工智能先驱Marvin Minsky,在创作HAL 9000的工作中,他担任了尽量将其制作得与当时主流研究界预言一致的项目顾问,他在1967年曾说:“在一代人之内,制造 ‘人工智能’ 的问题就将被基本解决。”1960年后,Herbert Simon发表了多项人工智能领域的著作,如“The sciences of artificial”和“Motivational and emotional controls of cognition”等,相比于计算机学家,Simon更多的关注了决策,认知,动机等方面的人为行动相关的因素。Marvin Minsky 在1967年发表了著作“Computation: Finite and Infinite Machines”,介绍了多种抽象计算的概念。

然而,到了1970年代早期,研究者们意识到他们远远低估了其中的困难。资助AI项目的机构开始对强人工智能产生怀疑,向研究者们施压要求他们转向更有用的技术,所谓的“应用AI”。在1980年代初,日本的第五代电脑开始重新对强人工智能恢复兴趣,制定的十年计划中包括一些强人工智能的目标,比如“进行日常对话”。同时,专家系统的成功和它一起促成了工业界和政府的资金重新开始注入这个领域。然而,人工智能的市场在1980年代晚期发生剧烈崩塌,而第五代计算机的目标从未实现。再一次,人工智能研究者们对于强人工智能即将到来的预言在20年之内被证明超出了他们的能力。到了1990年代,人工智能研究者背上了无法实现自己承诺的名声,他们拒绝再作出任何预言。并且避免提到任何“人类水平”的人工智能,以免被贴上“白日梦”的标签。这一阶段是人工智能的冰河期,也是对通用/强人工智能过于乐观的后果和教训。但是一些经典文章也产生了深刻价值,为后来的研究提供了基础和思路。

1972年,Minsky发表的文章“Artificial intelligence progress report”总结了过去几年的发展,主要的成果,以及存在的很多问题,为今后的研究塑造了一个方向。1977年,Feigenbaum发表论文“The art of artificial intelligence”,介绍了关于知识工程,心理学等多种人工智能话题。在1990年代和21世纪初,主流的人工智能在商业成果和学术地位上已经达到了一个新高度,依靠的是专注于细分的专门问题的解决,例如人工神经网络、机器视觉以及数据挖掘。(在此词条中就不对这些进行深入介绍和讨论)2007年,Ben Goertzel的著作“Artificial general intelligence”全面介绍了如何构造一个全面的思考机器,对通用人工智能提出了很多思考和待解决问题。同年,Goertzel的另一篇论文“A foundational architecture for artificial general intelligence”提出了一个用于构建通用人工智能基本框架的思想。

目前,大多数主流的人工智能研究者希望,能够通过将解决局部问题的方法组合起来实现强人工智能,例如将智能体架构、认知架构或者包容式架构整合起来。

主要事件

年份事件相关论文/Reference
1967Herbert Simon从认知,动机,情感控制等方面的人为行动相关的因素分析通用人工智能的发展Simon, H. A. (1967). Motivational and emotional controls of cognition. Psychological review, 74(1), 29.
1967Marvin Minsky发表著作ComputationMinsky, M. L. (1967). Computation. Englewood Cliffs: Prentice-Hall.
1972Minsky和Papert总结了过去几年的发展,主要的成果,以及存在的很多问题,为今后的研究塑造了一个方向Minsky, M., & Papert, S. A. (1972). Artificial intelligence progress report.
1977Felgenbaum介绍了关于知识工程,心理学等多种人工智能话题,不仅仅局限于计算机,统计等方面Felgenbaum, E. A. (1977). The art of artificial intelligence. In Proceedings of the International Joint Conference on Artificial Intelligence.
2007Goertzel全面介绍了如何构造一个全面的思考机器,对通用人工智能提出了很多思考和待解决问题Goertzel, B. (2007). Artificial general intelligence (Vol. 2). C. Pennachin (Ed.). New York: Springer.
2007Goertzel和Wang提出了一个用于构建通用人工智能基本框架的思想Goertzel, B., & Wang, P. (2007). A foundational architecture for artificial general intelligence. Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms, 6, 36.

发展分析

瓶颈

通用人工智能,意味着机器不能被一个简单的特定算法解决。 人们假定通用人工智能的问题包括计算机视觉、自然语言理解,以及处理真实世界中的意外情况。目前为止,通用人工智能的问题仍然不能单靠现代计算机技术解决,而是需要人类计算。这一点在某些方面很有用,例如通过验证码来判别人类和机器,以及在计算机安全方面用于阻止暴力破解法。但是想做到让机器全面实现任务,目前的人工智能还有相当大的局限性。

未来发展方向

  1. 拓宽现有弱人工智能的应用面,使机器视觉,语言理解等可以应用到更多生活中的场景。
  2. 开拓计算机科学家的视野,更多的关注心理学,神经科学,脑科学的发展和应用,从人类相关的领域获取灵感和人工智能发展的来源。
  3. 预先定义和解决通用人工智能可能带来的社会哲学问题。

Contributor: Yuanchao Li


相关人物
马文·明斯基
马文·明斯基
马文·李·明斯基,生于美国纽约州纽约市,美国科学家,专长于认知科学与人工智能领域,麻省理工学院人工智能实验室的创始人之一,著有几部人工智能和哲学方面的作品。1969年,因为在人工智能领域的贡献,获得图灵奖。
Edward Albert Feigenbaum
Edward Albert Feigenbaum
简介
相关人物