JS 散度

简介

KL 散度是非对称的,所以 C(G) 中的 KL(P_data || (P_data+P_G)/2) 左右两项是不能交换的,但如果同时加上另一项 KL(P_G || (P_data+P_G)/2),它们的和就能变成对称项。这两项 KL 散度的和即可以表示为 JS 散度(Jenson-Shannon divergence)

JS 散度的取值为 0 到 log2。若两个分布完全没有交集,那么 JS 散度取最大值 log2;若两个分布完全一样,那么 JS 散度取最小值 0。

相关人物
简介
相关人物