港大同济伯克利推出目标检测新范式:Sparse R-CNN
沿着目标检测领域中 Dense 和 Dense-to-Sparse 的框架,Sparse R-CNN 建立了一种彻底的 Sparse 框架, 脱离 anchor box,reference point,Region Proposal Network(RPN) 等概念,无需 Non-Maximum Suppression(NMS) 后处理, 在标准的 COCO benchmark 上使用 ResNet-50 FPN 单模型在标准 3x training schedule 达到了 44.5 AP 和 22 FPS。