INRIA最新《持续学习机器人技术:定义、框架、学习策略、机会与挑战》综述论文
持续学习 (CL) 是一种特殊的机器学习范式,它的数据分布和学习目标会随着时间的推移而改变,或者所有的训练数据和客观标准都不会立即可用。学习过程的演变是以一系列学习经验为模型的,其中的目标是能够在学习过程中一直学习新的技能,而不会忘记之前学过的知识。CL 可以看作是一种在线学习,需要进行知识融合,以便从按顺序及时呈现的数据流中学习。在学习过程中,不断学习的目的还在于优化记忆、计算能力和速度。机器学习的一个重要挑战不是必须找到在现实世界中有效的解决方案,而是找到可以在现实世界中学习的稳定算法。因此,理想的方法是在嵌入的平台中处理现实世界: 自治的代理。持续学习在自主代理或机器人中是有效的,它们将通过时间自主学习外部世界,并逐步发展一套复杂的技能和知识。机器人必须学会通过连续的观察来适应环境并与之互动。一些最近的方法旨在解决机器人持续学习的问题,但最近关于持续学习的论文只是在模拟或静态数据集的实验方法。不幸的是,对这些算法的评估并不能说明它们的解决方案是否有助于在机器人技术的背景下持续学习。这篇论文的目的是回顾持续学习的现有状态,总结现有的基准和度量标准,并提出一个框架来展示和评估机器人技术和非机器人技术的方法,使这两个领域之间的转换更加容易。我们在机器人技术的背景下强调持续学习,以建立各领域之间的联系并规范方法。