像人一样编辑源代码,谷歌大脑提出神经网络也可以学「编程」
利用机器学习学会如何自动写代码或修改代码一直非常诱人,它不仅能减少大量工程努力,同时也能构建更高级的智能体。在论文《NEURAL NETWORKS FOR MODELING SOURCE CODE EDITS》中,谷歌大脑的研究者提出利用神经网络建模我们对源代码的编辑,也就是说将我们对代码的编辑视为一个序列,然后像语言模型那样学会如何「写代码」。总体而言,这份研究在于理解人类编写代码的过程(例如 GitHub 的 commit),并使用深度神经网络模拟这个动态的编辑过程。只需要给定上一次的编辑信息,模型就能预测下一次代码编辑该改什么,从而继续修改与生成代码。