API统一、干净,适配PyTorch、TF,新型EagerPy实现多框架无缝衔接
在本文中,来自德国图宾根大学和图宾根伯恩斯坦计算神经科学中心的研究者将 eager execution 进行了扩展,提供了一个新的 Python 框架 EagerPy,它可以编写自动且原生地适配 PyTorch、TensorFlow、Jax 和 Numpy 的代码。EagerPy 对库开发者和用户都有裨益。EagerPy 能够编写与框架无关(framework-agnostic)的代码,这些代码可以与 PyTorch、TensorFlow、Jax 和 NumPy 实现原生地适配。这样一来,首先对于新库开发者而言,他们不仅可以选择同时支持上述这几个主流深度学习框架或者为每个框架重新实现库,而且可以对代码重复进行处理。其次对于这些库的使用者而言,他们也可以更轻松地切换深度学习框架,并且不会被特定的第三方库锁定。不仅如此,单个框架的使用者也会从 EagerPy 中获益,这是因为 EagerPy 提供了全面的类型注释以及对方法链接到任何框架的一致支持。