ECCV 2020 | 这个模型的脑补能力比GAN更强,ETH提出新型超分辨率模型SRFlow
超分辨率是一个不适定问题(ill-posed problem),它允许对给定的低分辨率图像做出多种预测。这一基础事实很大程度上被很多当前最优的深度学习方法所忽略,这些方法将重建和对抗损失结合起来,训练确定性映射(deterministic mapping)。近日,来自苏黎世联邦理工学院计算机视觉实验室的研究者提出了一种新的超分辨率模型 SRFlow。该模型是一种基于归一化流的超分辨率方法,具备比 GAN 更强的脑补能力,能够基于低分辨率输入学习输出的条件分布。