19个神经元控制自动驾驶汽车,MIT等虫脑启发新研究登Nature子刊
这种新型智能系统模仿线虫的神经系统来高效处理信息,比目前具有数百万参数的神经网络架构更加稳健、更易解释且训练速度更快。目前,该研究刊登在《自然-机器智能》子刊。该方法受线虫等小型动物大脑的启发,仅用数十个神经元即可控制自动驾驶汽车,而常规深度神经网络方法(如 Inception、ResNet、VGG 等)则需要数百万神经元。这一新型网络仅使用 75000 个参数、19 个神经元,比之前减少了数万倍!该方法还带来了额外的好处,由于神经元数量稀少,这样的网络不再是深度模型的「黑箱」,人们可以知道网络在每个运行阶段的情况。该研究项目负责人 Radu Grosu 教授表示:「正如线虫(nematode C. elegans)这种生命,它们以惊人的少量神经元实现有趣的行为模式。」