清华、中科大实现了量子版本的GAN,平均保真度98.8%
生成对抗学习是机器学习中最令人兴奋的突破之一。它在各种具有挑战性的任务中表现出色,如图像和视频生成。最近,研究者提出了理论上的生成对抗学习量子版本,并表明该版本的性能可能是经典 GAN 的指数倍。论文《Quantum generative adversarial learning in a superconducting quantum circuit》提供了超导量子电路中量子生成对抗学习的第一个原理验证的实验演示。文中证明,经过几轮对抗学习,可以训练量子态生成器来复制量子信道模拟器输出的量子数据的统计数据。这些数据具有高保真度(平均 98.8%),因此判别器无法区分真实数据和生成数据。该结果为实验探索具有噪声的中等规模量子器件(NISQ)的机器学习任务中的量子优势铺平了道路。