手残党福音:一键抠图、隔空移物,这篇CVPR华人论文帮你搞定
深度卷积神经网络已经被用于显著目标检测(Salient object detection),并获得了 SOTA 的性能。但先前研究的重点大多集中在区域准确率而非边界质量上。因此,在本文中,来自加拿大阿尔伯塔大学的研究者提出了一种预测优化架构 BASNet,以及一种用于边界感知显著目标检测(Boundary-Aware Salient object detection)的新型混合损失。论文的第一作者秦雪彬曾就读于山东农业大学和北京大学,现在是阿尔伯塔大学的博士后研究员。具体而言,该架构由密集监督的编码器 - 解码器网络和残差优化模块组成。它们分别负责显著性预测和显著图优化。混合损失通过集合二进制交叉熵(Binary Cross Entropy, BCE)、结构相似性(Structural SIMilarity, SSIM)和交并比(Intersectionover-Union, IoU)损失,指导网络学习输入图像和真值(ground-truth)之间的转换。借助于混合损失,预测优化架构能够有效地分割显著目标区域,并准确地预测具有清晰边界的精细结构。在六个公开数据集上的实验结果表明,无论是在区域评估还是在边界评估方面,该研究提出的方法都优于当前 SOTA 方法。