Nature子刊:用「反事实推断」帮模型识别罕见病,跻身专家水平,Judea Pearl力荐
如果说科学的本质是寻找变量之间的因果关系,那么过去几年机器学习的研究和努力依然没有触及问题的本质。正如图灵奖获得者、贝叶斯网络之父 Judea Pearl 所言,机器学习不过是在拟合数据和概率分布曲线,而变量的内在因果关系并未得到足够的重视。如果要真正解决科学问题,甚至开发真正意义上的智能机器,因果关系是必然要迈过的一道坎。最近发表在 Nature Communications 上的一项研究通过建立反事实因果诊断模型,提升了机器学习在医疗诊断领域的效果。