Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

GAN之父Ian Goodfellow加盟苹果

据 CNBC 报道,生成对抗网络(GAN)的创造者,前谷歌大脑著名科学家 Ian Goodfellow 刚刚正式宣布加盟苹果。他将在苹果公司领导一个「机器学习特殊项目组」。

虽然苹果此前已经缩小了自动驾驶汽车研究的规模,但 Ian Goodfellow 等人的加盟似乎意味着这家公司在人工智能军备竞赛中的投入不减反增。

目前,Ian Goodfellow 的 LinkedIn 账户已经更新了最近的跳槽活动:

「我在苹果公司领导一个机器学习特殊任务群组。」Goodfellow 写道。

在回归谷歌之前,Ian Goodfellow 在另一家著名人工智能研究机构 OpenAI 工作。后者是一个人工智能研究联盟,最初由埃隆·马斯克(Elon Musk)和其他科技名人出资创建。Ian Goodfellow 是生成对抗网络(GAN)之父,他的著作在 AI 领域广为引用。

Goodfellow 是谷歌在过去的 12 个月里被苹果挖走的第二位 AI 人才,是后者加强其 AI 战略的结果。前谷歌 AI 主管 John Giannandrea 也加入了苹果,担任苹果的机器学习人工智能战略高级副总裁,监管所有人工智能机器学习开发,包括 Core ML 和 Siri 技术。Giannandrea 和 Goodfellow 以前在谷歌一起工作,Goodfellow 似乎是 Giannandrea 出任苹果高管后精挑细选的人

Goodfellow 最突出的贡献是其在 2014 年提出了生成对抗网络(GAN)。GAN 包含两种神经网络:创造新数据实例的生成器和区分由生成器从真实数据中创建假数据的判别器。这两种神经网络通过越来越逼真的假数据来挑战彼此,优化自己的策略,直至生成数据与真实数据难以区分。

过去五年,GAN 在图像生成领域取得了重大突破,现在可以生成动物、风景以及人脸等高度逼真的合成图像。例如可以合成人脸的网站 thispersondoesnotexist.com 。但是,GAN 的成功也打开了潘多拉的魔盒,引发了诸多伦理问题和潜在危险。例如,有人利用 GAN 开发「deepfake」人脸交换技术,制作「换脸」明星色情片,同时也有人担忧 GAN 用于生成假新闻以操控公众舆论等。

苹果显然正处于团队建设模式。该公司最近聘请了特斯拉前工程副总裁 Michael Schwekutsch 担任另一个「特别项目组」的高级工程总监,为自动驾驶研发加码。

Ian GoodFellow 简介

Ian Goodfellow 是机器学习领域备受关注的年轻学者之一,本科与硕士就读于斯坦福大学,师从吴恩达,博士阶段则跟随蒙特利尔大学的著名学者 Yoshua Bengio 研究机器学习。他最引人注目的成就是在 2014 年 6 月提出了生成对抗网络(GAN)。这一技术近年来已成为机器学习界最火热的讨论话题,特别是近年来,与 GAN 有关的论文不断涌现。GAN 已成为众多学者的研究方向。

Ian GoodFellow 论文引用量逐年飙升,来源:Google Scholar

Ian Goodfellow 影响作者图,包括 Bengio、Hinton、LeCun 等巨头,来源:Semantic Scholar

在 2016 年,Ian Goodfellow、Yoshua Bengio、Aaron Courville 等人推出了著名的人工智能基础书《Deep Learning》,该书已被列为机器学习领域内的必读内容。

《Deep Learning》中文版链接:https://github.com/exacity/deeplearningbook-chinese

机器之心 Ian GoodFellow & Yoshua Bengio 联合签名版《Deep Learning》

由于在人工智能领域的激烈竞争,目前在 FAANG 工作的顶级 AI 人才可以获得六位数到七位数美元的薪资。Ian Goodfellow 在加盟苹果后会带来哪些新的技术突破?或许我们很快就会看到了。 

扩展阅读:

产业Apple谷歌GANIan Goodfellow
1
相关数据
吴恩达人物

斯坦福大学教授,人工智能著名学者,机器学习教育者。2011年,吴恩达在谷歌创建了谷歌大脑项目,以通过分布式集群计算机开发超大规模的人工神经网络。2014年5月16日,吴恩达加入百度,负责“百度大脑”计划,并担任百度公司首席科学家。2017年3月20日,吴恩达宣布从百度辞职。2017年12月,吴恩达宣布成立人工智能公司Landing.ai,并担任公司的首席执行官。2018年1月,吴恩达成立了投资机构AI Fund。

所属机构
自动驾驶技术技术

从 20 世纪 80 年代首次成功演示以来(Dickmanns & Mysliwetz (1992); Dickmanns & Graefe (1988); Thorpe et al. (1988)),自动驾驶汽车领域已经取得了巨大进展。尽管有了这些进展,但在任意复杂环境中实现完全自动驾驶导航仍被认为还需要数十年的发展。原因有两个:首先,在复杂的动态环境中运行的自动驾驶系统需要人工智能归纳不可预测的情境,从而进行实时推论。第二,信息性决策需要准确的感知,目前大部分已有的计算机视觉系统有一定的错误率,这是自动驾驶导航所无法接受的。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

自动驾驶汽车技术

自动驾驶汽车,又称为无人驾驶汽车、电脑驾驶汽车或轮式移动机器人,是自动化载具的一种,具有传统汽车的运输能力。作为自动化载具,自动驾驶汽车不需要人为操作即能感测其环境及导航。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

图像生成技术

图像生成(合成)是从现有数据集生成新图像的任务。

生成对抗网络技术

生成对抗网络是一种无监督学习方法,是一种通过用对抗网络来训练生成模型的架构。它由两个网络组成:用来拟合数据分布的生成网络G,和用来判断输入是否“真实”的判别网络D。在训练过程中,生成网络-G通过接受一个随机的噪声来尽量模仿训练集中的真实图片去“欺骗”D,而D则尽可能的分辨真实数据和生成网络的输出,从而形成两个网络的博弈过程。理想的情况下,博弈的结果会得到一个可以“以假乱真”的生成模型。

Elon Musk人物

伊隆·马斯克(Elon Musk)是一名美籍和加籍企业家,出生于南非。作为SpaceX、特斯拉和PayPal的创始人而闻名。

所属机构
推荐文章
暂无评论
暂无评论~