Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

参与路雪 王淑婷

利用Lattice LSTM的最优中文命名实体识别方法

近日,来自新加坡科技设计大学的研究者在 arXiv 上发布了一篇论文,介绍了一种新型中文命名实体识别方法,该方法利用 Lattice LSTM,性能优于基于字符和词的方法。与基于字符的方法相比,该模型显性地利用词和词序信息;与基于词的方法相比,lattice LSTM 不会出现分词错误。这篇论文已被 ACL 2018 接收。

作为信息抽取的一项基本任务,命名实体识别(NER)近年来一直受到研究人员的关注。该任务一直被作为序列标注问题来解决,其中实体边界和类别标签被联合预测。英文 NER 目前的最高水准是使用 LSTM-CRF 模型实现的(Lample et al., 2016; Ma and Hovy, 2016; Chiu and Nichols, 2016; Liu et al., 2018),其中字符信息被整合到词表征中。

中文 NER 与分词相关。命名实体边界也是词边界。执行中文 NER 的一种直观方式是先执行分词,然后再应用词序列标注。然而,分割 → NER 流程可能会遇到误差传播的潜在问题,因为 NE 是分割中 OOV 的重要来源,并且分割错误的实体边界会导致 NER 错误。这个问题在开放领域可能会很严重,因为跨领域分词仍然是一个未解决的难题(Liu and Zhang, 2012; Jiang et al., 2013; Liu et al., 2014; Qiu and Zhang, 2015; Chen et al., 2017; Huang et al., 2017)。已有研究表明,中文 NER 中,基于字符的方法表现要优于基于词的方法(He and Wang, 2008; Liu et al., 2010; Li et al., 2014)。

图 1:词-字符网格。

基于字符的 NER 的一个缺陷在于无法充分利用显性的词和词序信息,而它们是很有用的。为了解决这一问题,本论文研究者利用 lattice LSTM 来表征句子中的 lexicon word,从而将潜在词信息整合到基于字符的 LSTM-CRF 中。如图 1 所示,研究者使用一个大型自动获取的词典来匹配句子,进而构建基于词的 lattice。因此,词序如「长江大桥」、「长江」和「大桥」可用于语境中的潜在相关命名实体消歧,如人名「江大桥」。

由于在网格中存在指数级数量的词-字符路径,因此研究者利用 lattice LSTM 结构自动控制从句子开头到结尾的信息流。如图 2 所示,门控单元用于将来自不同路径的信息动态传送到每个字符。在 NER 数据上训练后,lattice LSTM 能够学会从语境中自动找到更有用的词,以取得更好的 NER 性能。与基于字符和基于词的 NER 方法相比,本论文提出的模型的优势在于利用利用显性的词信息而不是字符序列标注,且不会出现分词误差。

图 2:Lattice LSTM 结构。

结果显示该模型显著优于基于字符的序列标注模型和使用 LSTMCRF 的基于词的序列标注模型,在不同领域的多个中文 NER 数据集上均获得最优结果。

模型

研究者遵循最好的英文 NER 模型(Huang et al., 2015; Ma and Hovy, 2016; Lample et al., 2016),使用 LSTM-CRF 作为主要网络结构。形式上,指定输入句子为 s = c_1, c_2, . . . , c_m,其中 c_j 指第 j 个字符。s 还可以作为词序列 s = w_1, w_2, . . . , w_n,其中 w_i 指句子中的第 i 个词,使用中文分词器获得。研究者使用 t(i, k) 来指句子第 i 个词中第 k 个字符的索引 j。以图 1 中的句子为例。如果分词是「南京市 长江大桥」,索引从 1 开始,则 t(2, 1) = 4 (长),t(1, 3) = 3 (市)。研究者使用 BIOES 标记规则(Ratinov and Roth, 2009)进行基于词和基于字符的 NER 标记。

图 3:模型。

表 4:在开发集上的结果。

表 5:在 OntoNotes 上的主要结果。

论文:Chinese NER Using Lattice LSTM

  • 论文链接:https://arxiv.org/abs/1805.02023

  • 项目链接:https://github.com/jiesutd/LatticeLSTM

摘要:我们研究了用于中文命名实体识别(NER)的 lattice LSTM 模型,该模型对输入字符序列和所有匹配词典的潜在词汇进行编码。与基于字符的方法相比,该模型显性地利用词和词序信息。与基于词的方法相比,lattice LSTM 不会出现分词错误。门控循环单元使得我们的模型能够从句子中选择最相关的字符和词,以生成更好的 NER 结果。在多个数据集上的实验证明 lattice LSTM 优于基于词和基于字符的 LSTM 基线模型,达到了最优的结果。

理论自然语言处理ACL 2018论文
3
相关数据
门控循环单元技术

门控循环单元(GRU)是循环神经网络(RNN)中的一种门控机制,与其他门控机制相似,其旨在解决标准RNN中的梯度消失/爆炸问题并同时保留序列的长期信息。GRU在许多诸如语音识别的序列任务上与LSTM同样出色,不过它的参数比LSTM少,仅包含一个重置门(reset gate)和一个更新门(update gate)。

命名实体识别技术

命名实体识别(NER)是信息提取(Information Extraction)的一个子任务,主要涉及如何从文本中提取命名实体并将其分类至事先划定好的类别,如在招聘信息中提取具体招聘公司、岗位和工作地点的信息,并将其分别归纳至公司、岗位和地点的类别下。命名实体识别往往先将整句拆解为词语并对每个词语进行此行标注,根据习得的规则对词语进行判别。这项任务的关键在于对未知实体的识别。基于此,命名实体识别的主要思想在于根据现有实例的特征总结识别和分类规则。这些方法可以被分为有监督(supervised)、半监督(semi-supervised)和无监督(unsupervised)三类。有监督学习包括隐形马科夫模型(HMM)、决策树、最大熵模型(ME)、支持向量机(SVM)和条件随机场(CRF)。这些方法主要是读取注释语料库,记忆实例并进行学习,根据这些例子的特征生成针对某一种实例的识别规则。

信息抽取技术

信息/数据抽取是指从非结构化或半结构化文档中提取结构化信息的技术。信息抽取有两部分:命名实体识别(目标是识别和分类真实世界里的知名实体)和关系提取(目标是提取实体之间的语义关系)。概率模型/分类器可以帮助实现这些任务。

推荐文章
暂无评论
暂无评论~