Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

ICML 2024演讲爆火!Meta朱泽园揭秘大模型内心世界:不同于人类的2级推理

图片

AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com


语言模型 (LLM) 是如何解数学题的?是通过模板记忆,还是真的学会了推理思维?模型的心算过程是怎样的?能学会怎样的推理技能?与人类相同,还是超越了人类?只学一种类型的数学题,是会对通用智能的发展产生帮助?LLM 为什么会犯推理错误?多大多深的 LLM 才能做推理?

图片

论文地址:https://arxiv.org/abs/2407.20311

近日,来自 Meta FAIR、CMU 和 MBZUAI 的叶添、徐子诚、李远志、朱泽园四人团队最新公布 arXiv 论文《语言模型物理学 Part 2.1:小学数学与隐藏的推理过程》用可控实验,巧妙地回答上述问题。推特网友 @xlr8harder 评价,「这一结果将一劳永逸地平息关于 LLM 是否具有推理能力,或者只是随机鹦鹉的争论。」

编者注:《语言模型物理学》全系列受邀于 7 月 22 日在 ICML 2024 国际机器学习顶级大会上进行了两小时的专题报告,反响热烈,据悉现场掌声不断。这里为大家呈现系列中的 Part 2.1。

图片                                       图 1

论文详解

首先,根据本系列的惯例,作者认为不应通过与 GPT-4 等大模型对话来猜测其思维方式,这类似于动物行为学,虽可行但不够严谨,无法科学地揭示 GPT-4 的内心思考过程。

此外,从数据角度看,只有完全访问模型的预训练集(pretrain data),才能明确哪些题目是模型见过的,哪些是通过推理学会的。即使模型在 GSM8k(包含 8000 道小学数学题的基准测试集)上获得高分,也难以判断它是否见过这些题目的变体(如不同语言或 GPT-4 改写后的变体)。

为此,作者创建了 iGSM,一个人工合成的、模拟小学数学级别的思维题集,并让模型从零开始在 iGSM 上预训练,以控制模型接触的问题类别。值得注意的是,iGSM 不包含常识信息,只包含 mod 23 范围内的加减乘,并且所有计算都使用 CoT 逐步进行。通过 iGSM,可进行可控实验,专门研究模型的推理能力,而忽略了其他因素(如大整数运算)。图 2 展示了一个简单的例题。

图片                                       图 2

通过这个数据集,作者首先测试了 GPT2(RoPE 版)的表现。用 op 代表解题所需的数学运算步数,作者发现,当在 op≤21 的题目上进行训练时,模型不仅能达到 99% 正确率,还能在更高难度的题目(如 op=32)上保持 83% 的正确率(见图 3)。这表明模型学会了某种推理技能,毕竟它从未见过 op>21 的题。(顺带一提,GPT-4o 在该数据集上仅能应对 op=10 的题目,超过这个难度就如同盲猜,文末我们会讨论这个问题。)

那模型究竟学会了怎样的推理技能呢?解决 iGSM 的数学题至少有两种思路。一种是作者称为「0 级推理」,即「暴力计算能算则算」。由于题目中的变量可能存在复杂的依赖关系,有些可以直接计算,有些则需要先算出其他变量 —— 譬如小张比小王多 3 倍的水果,那么就要先算出小王有多少苹果、梨子并求和,才可以开始计算小张的水果数。「0 级推理」就是尽可能枚举所有变量,每次随机找到一个可计算的变量,算出结果并继续。

与之对应的是「1 级推理」:通过拓扑排序,从问题开始反推,确定哪些变量需要计算,然后从叶子节点开始向上计算,力求「最短解答」。常见的数学题解通常采用 1 级推理,不会去计算「不必要的变量」。例如小张比小王多 3 倍的水果,问小张有多少水果,那小李的苹果数就是不必要的变量,而小王的苹果、梨子数都是必要的。

如图 3 所示,作者发现,GPT-2 可以学会 1 级推理,几乎每次都给出最短解答。这非常不简单!因为在模型生成第一句话之前,必须已经在脑海中完成了整个拓扑排序 —— 否则它怎么知道哪个变量是不必要的?如果模型一开始就生成了「小李的苹果有 7 个」,那就无法回头,得不到最短解答。

图片                                           图 3

那么,模型是如何学会「1 级推理」的?为此,作者对模型的内部参数进行了探针 probing 研究(见图 4)。结论显示(具体探针方法详见论文),在模型生成第一句话之前,它已经通过心算确定了哪些变量 A 是「必要的」(nece (A)=True)。同时,模型在说每句话之后,也心算出了接下来所有「可计算的」的变量 A(cannext (A)=True)。因此,模型只需对 nece 和 cannext 不断进行逻辑与(AND)运算,就能从叶子节点开始,一步步给出完整的计算过程。

值得注意的是,这些复杂的心算能力并没有显现在训练集中。模型只接触过 iGSM 数据,只见过「语言」部分(题目和答案),但它却自主学会了类似人类的思维过程(mental process),并得出了最优解!换言之,这项研究反驳了我们一周前在《语言≠思维,大模型学不了推理:一篇 Nature 让 AI 社区炸锅了》中的报道,用科学方法证明了大模型通过语言确实能学会思维

更神奇的是,模型学到的不止如此。在图 4 中,作者还发现模型会心算许多对解题无用的信息。比如,在变量关系刚被描述完,甚至在问题尚未提出之前,模型已经知道任意两个变量 A 和 B 之间是否存在递归依赖 —— 即使这些变量与解题无关。对人类来说,我们通常会从问题开始反推,忽略不必要的变量,而 GPT-2 这样的语言模型则会将整个关系图梳理一遍,以应对将来可能被问及的任何问题。作者将这种能力称为「2 级推理」。

虽然「2 级推理」对解题不必须,但它确实是一种更通用的技能。模型利用并行能力,对信息进行大量因果梳理。这一能力是语言模型在学习解题中自行掌握的,没有人 (数据) 教过它这么做。作者猜测,这或许是通用人工智能(AGI)中「通用」一词的潜在来源,即语言模型可以超越数据集所教的技能,学会更为通用的能力。

图片                                          图 4

接下来,作者研究了模型为何会犯错。总结来看,在 iGSM 数据集上,模型几乎只会犯两类错误:一是计算不必要的变量,二是计算当前不可算的变量,如图 5 所示。

对于前者,作者发现,如果模型在生成答案之前就心算出错,误认为某个变量 A 是 「必要的」(nece (A)=True),那么模型在生成答案时很可能会对 A 强行计算,从而产生非最短解答。这一发现非常有趣,它表明许多错误是系统性的,在生成第一个 token 之前,模型还没张嘴就可以确信它会犯错(通过探针的方法)。这类错误与模型生成过程中的随机性或 beam search 无关。

至于后者,作者也将其归因于心算错误,并将用一整篇的后续 Part 2.2 论文,来针对性提高模型的心算能力,以最终提高解题正确率。该论文尚未发布,我们会在公众号中继续关注并报道。

图片                                         图 5

下一个结论是,作者反驳了大模型缩放定律(scaling law)中强调的「唯大独尊」,即模型的表现只与参数数量相关,而与宽度或深度无关。这一观点最早由 OpenAI 的缩放定律论文提出,并在后续几乎所有研究中得到遵循。

作者通过 iGSM 数据集进行了一个可控实验,如图 6 所示。通过对比更小更深的模型与更大更宽的模型,发现对于解决 iGSM 中的数学题,模型的深度显然比宽度更为重要。例如,一个 20 层、9 个 head 的模型,表现远好于 4 层、30 个 head 的模型,尽管后者有两倍的参数

更进一步,作者发现对深度的依赖源于模型心算的复杂性。通过对模型不同深度的探针研究,作者发现,对于那些与问题较远的变量 A,心算 nece (A) 往往需要更多层数。具体来说,若变量 A 与问题变量的距离为 t,则需要进行 t 步心算才能知道 nece (A)=True。t 越大,模型所需的层数也越多,如图 6 所示。

作者强调,模型对深度的依赖无法通过思维链(Chain-of-Thought, CoT)来抵消。事实上,iGSM 中的数学题解已经尽可能地使用了 CoT,即所有计算都被拆解为一步一步。即便如此,模型仍需要通过心算来规划 CoT 的第一步该算什么 —— 这个心算过程可能依然需要多个步骤。这解释了模型对深度依赖的原因。

图片                                          图 6

综上所述,与 99% 以上的研究 LLM 行为过程(behavior process)的论文不同,本文作者另辟蹊径,揭示了 LLM 在解决数学问题时的心理过程(mental process),为理解 LLM 的智能提供了新的视角。

文章最后作者指出,即便是 GPT-4,在 iGSM 数据集上也只能进行最多 10 步的推理。这表明,即使是当前最强的模型,利用了据称所有的互联网数据,仍无法精准地完成超过 10 步推理。这暗示现有大模型使用的预训练数据集(pretrain data)可能还有很大的改进空间。通过本文的方法,建立人工合成数据来增强模型的推理能力以及信息梳理能力,或许是一种新的可能。
入门语言模型物理学
相关数据
机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

规划技术

人工智能领域的「规划」通常是指智能体执行的任务/动作的自动规划和调度,其目的是进行资源的优化。常见的规划方法包括经典规划(Classical Planning)、分层任务网络(HTN)和 logistics 规划。

逻辑技术

人工智能领域用逻辑来理解智能推理问题;它可以提供用于分析编程语言的技术,也可用作分析、表征知识或编程的工具。目前人们常用的逻辑分支有命题逻辑(Propositional Logic )以及一阶逻辑(FOL)等谓词逻辑。

语言模型技术

语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。由于字词与句子都是任意组合的长度,因此在训练过的语言模型中会出现未曾出现的字串(资料稀疏的问题),也使得在语料库中估算字串的机率变得很困难,这也是要使用近似的平滑n元语法(N-gram)模型之原因。

通用人工智能技术

通用人工智能(AGI)是具有一般人类智慧,可以执行人类能够执行的任何智力任务的机器智能。通用人工智能是一些人工智能研究的主要目标,也是科幻小说和未来研究中的共同话题。一些研究人员将通用人工智能称为强AI(strong AI)或者完全AI(full AI),或称机器具有执行通用智能行为(general intelligent action)的能力。与弱AI(weak AI)相比,强AI可以尝试执行全方位的人类认知能力。

GPT-2技术

GPT-2是OpenAI于2019年2月发布的基于 transformer 的大型语言模型,包含 15 亿参数、在一个 800 万网页数据集上训练而成。据介绍,该模型是对 GPT 模型的直接扩展,在超出 10 倍的数据量上进行训练,参数量也多出了 10 倍。在性能方面,该模型能够生产连贯的文本段落,在许多语言建模基准上取得了 SOTA 表现。而且该模型在没有任务特定训练的情况下,能够做到初步的阅读理解、机器翻译、问答和自动摘要。

机器之心机构

机器之心,成立于2014年,是国内最具影响力、最专业、唯一用于国际品牌的人工智能信息服务与产业服务平台。目前机器之心已经建立起涵盖媒体、数据、活动、研究及咨询、线下物理空间于一体的业务体系,为各类人工智能从业者提供综合信息服务和产业服务。

https://www.jiqizhixin.com/
推荐文章
暂无评论
暂无评论~