Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

几分钟生成四维内容,还能控制运动效果:北大、密歇根提出DG4D

图片
AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com

本文作者潘亮博士目前是上海人工智能实验室的Research Scientist。此前,在2020年至2023年,他于新加坡南洋理工大学S-Lab担任Research Fellow,指导老师为刘子纬教授。他的研究重点是计算机视觉、3D点云和虚拟人类,并在顶级会议和期刊上发表了多篇论文,谷歌学术引用超过2700次。此外,他还多次担任计算机视觉机器学习等领域顶级会议和期刊的审稿人。

近期,商汤科技 - 南洋理工大学联合 AI 研究中心 S-Lab ,上海人工智能实验室,北京大学与密歇根大学联合提出 DreamGaussian4D(DG4D),通过结合空间变换的显式建模与静态 3D Gaussian Splatting(GS)技术实现高效四维内容生成。

四维内容生成近来取得了显著进展,但是现有方法存在优化时间长、运动控制能力差、细节质量低等问题。DG4D 提出了一个包含两个主要模块的整体框架:1)图像到 4D GS - 我们首先使用 DreamGaussianHD 生成静态 3D GS,接着基于 HexPlane 生成基于高斯形变的动态生成;2)视频到视频纹理细化 - 我们细化生成的 UV 空间纹理映射,并通过使用预训练的图像到视频扩散模型增强其时间一致性。

值得注意的是,DG4D 将四维内容生成的优化时间从几小时缩短到几分钟(如图 1 所示),允许视觉上控制生成的三维运动,并支持生成可以在三维引擎中真实渲染的动画网格模型。

图片

  • 论文名称: DreamGaussian4D: Generative 4D Gaussian Splatting

  • 主页地址: https://jiawei-ren.github.io/projects/dreamgaussian4d/ 

  • 论文地址: https://arxiv.org/abs/2312.17142  

  • Demo 地址: https://huggingface.co/spaces/jiawei011/dreamgaussian4d

图片

                                   图 1. DG4D 在四分半钟内可实现四维内容优化基本收敛

问题和挑战

生成模型可以极大地简化多样化数字内容(如二维图像、视频和三维景物)的生产和制作,近年来取得了显著进步。四维内容是诸如游戏、影视等诸多下游任务的重要内容形式。四维生成内容也应支持导入传统图形学渲染引擎软件(比如,Blender 或者 Unreal Engine),以接入现有图形学内容生产管线(见图 2)。

尽管有一些研究致力于动态三维(即四维)生成,但四维景物的高效和高质量生成仍然存在挑战。近年来,越来越多的研究方法通过结合视频和三维生成模型,约束任意视角下内容外观和动作的一致性,以实现四维内容生成。

图片

                                   图 2. DG4D 生成的四维内容支持导入到传统计算机图形学渲染引擎中

目前主流的四维内容生成方法都基于四维动态神经辐射场(4D NeRF)表示。比如,MAV3D [1] 通过在 HexPlane [2] 上提炼文本到视频的扩散模型,实现了文本到四维内容的生成。Consistent4D [3] 引入了一个视频到四维的框架,以优化级联的 DyNeRF,从静态捕获的视频中生成四维景物。通过多重扩散模型的先验,Animate124 [4] 能够通过文本运动描述将单个未处理的二维图像动画化为三维的动态视频。基于混合 SDS [5] 技术,4D-fy [6] 使用多个预训练扩散模型可实现引人入胜的文本到四维内容的生成。

然而,所有上述现有方法 [1,3,4,6] 生成单个 4D NeRF 都需要数个小时,这极大地限制了它们的应用潜力。此外,它们都难以有效控制或选择最后生成的运动。以上不足主要来自以下几个因素:首先,前述方法的底层隐式四维表示不够高效,存在渲染速度慢和运动规律性差的问题;其次,视频 SDS 的随机性质增加了收敛难度,并在最终结果中引入了不稳定性和多种瑕疵伪影现象。

方法介绍

与直接优化 4D NeRF 的方法不同,DG4D 通过结合静态高斯泼溅技术和显式的空间变换建模,为四维内容生成构建了一个高效和强力的表征。此外,视频生成方法有潜力提供有价值的时空先验,增强高质量的 4D 生成。具体而言,我们提出了一个包含两个主要阶段的整体框架:1)图像到 4D GS 的生成;2)基于视频大模型的纹理图细化。

1. 图像到 4D GS 的生成

图片

                                    图 3 图片到 4D GS 生成框架图

在这一阶段中,我们使用静态 3D GS 及其空间变形来表示动态的四维景物。基于一张给定的二维图片,我们使用增强方法 DreamGaussianHD 方法生成静态 3D GS。随后,通过在静态 3D GS 函数上优化时间依赖的变形场,估计各个时间戳处的高斯变形,旨在让变形后的每一帧的形状和纹理都与驱动视频里面的对应帧尽力保持吻合。这一阶段结束,将可以生成一段动态的三维网格模型序列。

图片

                                     图 4 DreamGaussianHD 初始化基于 3D GS 的三维物体模型

  • DreamGaussianHD 基于近来使用 3D GS 的图生三维物体方法 DreamGaussian [7],我们做了一些进一步的改进,整理出一套效果更佳的 3D GS 生成和初始化方法。主要改进的操作包括有 1)采取多视角的优化方式;2)设定优化过程中的渲染图片背景为更适合生成的黑色背景。我们称呼改进后的版本为 DreamGaussianHD,具体的改进效果图可见图 4。

图片

                                       图 5 HexPlane 表征动态形变场

  • Gaussian Deformation 基于生成的静态 3D GS 模型,我们通过预测每一帧中高斯核的变形来生成符合期望视频的动态 4D GS 模型。在动态效果的表征上,我们选用 HexPlane(如图 5 所示)来预测每一个时间戳下高斯核位移、旋转和比例尺度,从而驱动生成每一帧的动态模型。此外,我们也针对性地调整设计网络,尤其是对最后几个线性操作的网络层做了残差连接和零初始化的设计,从而可以平滑充分地基于静态 3D GS 模型初始化动态场(效果如图 6 所示)。

图片

                                     图 6 零初始化动态形变场对最后生成效果的影响

2. 视频到视频的纹理优化

图片

                                         图 7 视频到视频纹理优化框架图

类似于 DreamGaussian,在第一阶段基于 4D GS 的四维动态模型生成结束后,可以提取四维的网格模型序列。并且,我们也可以类似于 DreamGaussian 的做法,在网格模型的 UV 空间中对纹理做进一步的优化。不同于 DreamGaussian 只对单独的三维网格模型使用图片生成模型做纹理的优化,我们需要对整个三维网格序列做优化。

并且,我们发现如果沿用 DreamGaussian 的做法,即对每个三维网格序列做独立的纹理优化,会导致三维网格的纹理在不同的时间戳下有不一致的生成,并且常常会有闪烁等瑕疵伪影效果出现。鉴于此,我们有别于 DreamGaussian,提出了基于视频生成大模型的视频到视频的 UV 空间下纹理优化方法。具体而言,我们在优化过程中随机生成了一系列相机轨迹,并基于此渲染出多个视频,并对渲染出的视频做相应的加噪和去噪处理,从而实现对生成网格模型序列的纹理增强。

基于图片生成大模型和基于视频生成大模型做的纹理优化效果对比展示在图 8 中。

图片

                                                                      图 8 基于视频到视频的纹理优化可以实现时序上纹理的稳定性和一致性

实验结果

相比之前整体优化 4D NeRF 的方法,DG4D 显著减少了四维内容生成所需的时间。具体的用时对比可见表 1。

图片

                                     表 1 四维内容生成方法用时对比

对于基于单图生成四维内容的设置,我们跟随之前方法的对比方式,将生成的四维内容与给定图片的一致程度汇报在表 2 中。

图片

                                                                    表 2 基于单图生成的四维内容与图片的一致性对比

对于基于视频生成四维内容的设置,视频生成四维内容方法的数值结果对比可见表 3。

图片

                                       表 3 基于视频生成的四维内容相关方法的数值结果对比

此外,我们还对最符合我们方法的单图生成四维内容的各个方法的生成结果做了用户采样测试,测试的结果汇报在表 4 中。

图片

                                      表 4 基于单图生成的四维内容的用户测试

DG4D 与现存开源 SoTA 的图生成四维内容方法和视频生成四维内容方法的效果对比图,分别展示在图 9 和图 10 中。

图片

                                     图 9 图生四维内容效果对比图

图片

                                    图 10 视频生四维内容效果对比图

此外,我们还基于近期的直接前馈实现单图生成 3D GS 的方法(即非使用 SDS 优化方法),做了静态三维内容的生成,并基于此初始化了动态 4D GS 的生成。直接前馈生成 3D GS,可以比基于 SDS 优化的方法,更快地得到质量更高,也更多样化的三维内容。基于此得到的四维内容,展示在图 11 中。

图片

                                 图 11 基于前馈生成 3D GS 的方法生成的四维动态内容

更多基于单图生成的四维内容展示在图 12 中。

图片

结语

基于 4D GS,我们提出了 DreamGaussian4D(DG4D),这是一个高效的图像到 4D 生成框架。相较于现存的四维内容生成框架,DG4D 显著将优化时间从几小时缩短到几分钟。此外,我们展示了使用生成的视频进行驱动运动生成,实现了视觉可控的三维运动生成。

最后,DG4D 允许进行三维网格模型提取,并支持实现时序上保持连贯一致的高质量纹理优化。我们希望 DG4D 提出的四维内容生成框架,将促进四维内容生成方向的研究工作,并有助于多样化的实际应用。

References

[1] Singer et al. "Text-to-4D dynamic scene generation." Proceedings of the 40th International Conference on Machine Learning. 2023. 

[2] Cao et al. "Hexplane: A fast representation for dynamic scenes." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023. 

[3] Jiang et al. "Consistent4D: Consistent 360° Dynamic Object Generation from Monocular Video." The Twelfth International Conference on Learning Representations. 2023.

[4] Zhao et al. "Animate124: Animating one image to 4d dynamic scene." arXiv preprint arXiv:2311.14603 (2023). 

[5] Poole et al. "DreamFusion: Text-to-3D using 2D Diffusion." The Eleventh International Conference on Learning Representations. 2022.

[6] Bahmani, Sherwin, et al. "4d-fy: Text-to-4d generation using hybrid score distillation sampling." arXiv preprint arXiv:2311.17984 (2023).

[7] Tang et al. "DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation." The Twelfth International Conference on Learning Representations. 2023.

工程DreamGaussian4D商汤科技
相关数据
商汤科技机构

作为人工智能软件公司,商汤科技以“坚持原创,让AI引领人类进步”为使命,“以人工智能实现物理世界和数字世界的连接,促进社会生产力可持续发展,并为人们带来更好的虚实结合生活体验”为愿景,旨在持续引领人工智能前沿研究,持续打造更具拓展性更普惠的人工智能软件平台,推动经济、社会和人类的发展,并持续吸引及培养顶尖人才,共同塑造未来。

http://www.sensetime.com
计算机图形技术

图像数据处理、计算机图像(英语:Computer Graphics)是指用计算机所创造的图形。更具体的说,就是在计算机上用专门的软件和硬件用来表现和控制图像数据。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

收敛技术

在数学,计算机科学和逻辑学中,收敛指的是不同的变换序列在有限的时间内达到一个结论(变换终止),并且得出的结论是独立于达到它的路径(他们是融合的)。 通俗来说,收敛通常是指在训练期间达到的一种状态,即经过一定次数的迭代之后,训练损失和验证损失在每次迭代中的变化都非常小或根本没有变化。也就是说,如果采用当前数据进行额外的训练将无法改进模型,模型即达到收敛状态。在深度学习中,损失值有时会在最终下降之前的多次迭代中保持不变或几乎保持不变,暂时形成收敛的假象。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

映射技术

映射指的是具有某种特殊结构的函数,或泛指类函数思想的范畴论中的态射。 逻辑和图论中也有一些不太常规的用法。其数学定义为:两个非空集合A与B间存在着对应关系f,而且对于A中的每一个元素x,B中总有有唯一的一个元素y与它对应,就这种对应为从A到B的映射,记作f:A→B。其中,y称为元素x在映射f下的象,记作:y=f(x)。x称为y关于映射f的原象*。*集合A中所有元素的象的集合称为映射f的值域,记作f(A)。同样的,在机器学习中,映射就是输入与输出之间的对应关系。

生成模型技术

在概率统计理论中, 生成模型是指能够随机生成观测数据的模型,尤其是在给定某些隐含参数的条件下。 它给观测值和标注数据序列指定一个联合概率分布。 在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。

机器之心机构

机器之心,成立于2014年,是国内最具影响力、最专业、唯一用于国际品牌的人工智能信息服务与产业服务平台。目前机器之心已经建立起涵盖媒体、数据、活动、研究及咨询、线下物理空间于一体的业务体系,为各类人工智能从业者提供综合信息服务和产业服务。

https://www.jiqizhixin.com/
图生成技术

根据给定信息信息生成图表。

视频生成技术

视频生成是指利用深度学习等技术生成视频的任务。

北京大学机构

北京大学创办于1898年,初名京师大学堂,是中国第一所国立综合性大学,也是当时中国最高教育行政机关。辛亥革命后,于1912年改为现名。2000年4月3日,北京大学与原北京医科大学合并,组建了新的北京大学。原北京医科大学的前身是国立北京医学专门学校,创建于1912年10月26日。20世纪三、四十年代,学校一度名为北平大学医学院,并于1946年7月并入北京大学。1952年在全国高校院系调整中,北京大学医学院脱离北京大学,独立为北京医学院。1985年更名为北京医科大学,1996年成为国家首批“211工程”重点支持的医科大学。两校合并进一步拓宽了北京大学的学科结构,为促进医学与人文社会科学及理科的结合,改革医学教育奠定了基础。

官网,http://www.pku.edu.cn/
推荐文章
暂无评论
暂无评论~