Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

Stable Diffusion 3论文终于发布,架构细节大揭秘,对复现Sora有帮助?

在众多前沿成果都不再透露技术细节之际,Stable Diffusion 3 论文的发布显得相当珍贵。

Stable Diffusion 3 的论文终于来了!

这个模型于两周前发布,采用了与 Sora 相同的 DiT(Diffusion Transformer)架构,一经发布就引起了不小的轰动。

与之前的版本相比,Stable Diffusion 3 生成的图在质量上实现了很大改进,支持多主题提示,文字书写效果也更好了(明显不再乱码)。

Stability AI 表示,Stable Diffusion 3 是一个模型系列,参数量从 800M 到 8B 不等。这个参数量意味着,它可以在很多便携式设备上直接跑,大大降低了 AI 大模型的使用门槛。

在最新发布的论文中,Stability AI 表示,在基于人类偏好的评估中,Stable Diffusion 3 优于当前最先进的文本到图像生成系统,如 DALL・E 3、Midjourney v6 和 Ideogram v1。不久之后,他们将公开该研究的实验数据、代码和模型权重

图片

在论文中,Stability AI 透露了关于 Stable Diffusion 3 的更多细节。

图片

  • 论文标题:Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

  • 论文链接:https://stabilityai-public-packages.s3.us-west-2.amazonaws.com/Stable+Diffusion+3+Paper.pdf

架构细节

对于文本到图像的生成,Stable Diffusion 3 模型必须同时考虑文本和图像两种模式。因此,论文作者称这种新架构为 MMDiT,意指其处理多种模态的能力。与之前版本的 Stable Diffusion 一样,作者使用预训练模型来推导合适的文本和图像表征。具体来说,他们使用了三种不同的文本嵌入模型 —— 两种 CLIP 模型和 T5—— 来编码文本表征,并使用改进的自编码模型来编码图像 token。

图片

                               Stable Diffusion 3 模型架构。

图片

                               改进的多模态扩散 transformer:MMDiT 块。

SD3 架构基于 Sora 核心研发成员 William Peebles 和纽约大学计算机科学助理教授谢赛宁合作提出的 DiT。由于文本嵌入和图像嵌入在概念上有很大不同,因此 SD3 的作者对两种模态使用两套不同的权重。如上图所示,这相当于为每种模态设置了两个独立的 transformer,但将两种模态的序列结合起来进行注意力运算,从而使两种表征都能在各自的空间内工作,同时也将另一种表征考虑在内。

图片

                                在训练过程中测量视觉保真度和文本对齐度时,作者提出的 MMDiT 架构优于 UViT 和 DiT 等成熟的文本到图像骨干。

通过这种方法,信息可以在图像和文本 token 之间流动,从而提高模型的整体理解能力,并改善所生成输出的文字排版。正如论文中所讨论的那样,这种架构也很容易扩展到视频等多种模式。

图片

得益于 Stable Diffusion 3 改进的提示遵循能力,新模型有能力制作出聚焦于各种不同主题和质量的图像,同时还能高度灵活地处理图像本身的风格。

图片

通过 re-weighting 改进 Rectified Flow

Stable Diffusion 3 采用 Rectified Flow(RF)公式,在训练过程中,数据和噪声以线性轨迹相连。这使得推理路径更加平直,从而减少了采样步骤。此外,作者还在训练过程中引入了一种新的轨迹采样计划。他们假设,轨迹的中间部分会带来更具挑战性的预测任务,因此该计划给予轨迹中间部分更多权重。他们使用多种数据集、指标和采样器设置进行比较,并将自己提出的方法与 LDM、EDM 和 ADM 等 60 种其他扩散轨迹进行了测试。结果表明,虽然以前的 RF 公式在少步采样情况下性能有所提高,但随着步数的增加,其相对性能会下降。相比之下,作者提出的重新加权 RF 变体能持续提高性能。

图片

扩展 Rectified Flow Transformer 模型

作者利用重新加权的 Rectified Flow 公式和 MMDiT 骨干对文本到图像的合成进行了扩展(scaling)研究。他们训练的模型从带有 450M 个参数的 15 个块到带有 8B 个参数的 38 个块不等,并观察到验证损失随着模型大小和训练步骤的增加而平稳降低(上图的第一行)。为了检验这是否转化为对模型输出的有意义改进,作者还评估了自动图像对齐指标(GenEval)和人类偏好分数(ELO)(上图第二行)。结果表明,这些指标与验证损失之间存在很强的相关性,这表明后者可以很好地预测模型的整体性能。此外,scaling 趋势没有显示出饱和的迹象,这让作者对未来继续提高模型性能持乐观态度。

灵活的文本编码器

通过移除用于推理的内存密集型 4.7B 参数 T5 文本编码器,SD3 的内存需求可显著降低,而性能损失却很小。如图所示,移除该文本编码器不会影响视觉美感(不使用 T5 时的胜率为 50%),只会略微降低文本一致性(胜率为 46%)。不过,作者建议在生成书面文本时加入 T5,以充分发挥 SD3 的性能,因为他们观察到,如果不加入 T5,生成排版的性能下降幅度更大(胜率为 38%),如下图所示:

图片

             只有在呈现涉及许多细节或大量书面文本的非常复杂的提示时,移除 T5 进行推理才会导致性能显著下降。上图显示了每个示例的三个随机样本。

模型性能

作者将 Stable Diffusion 3 的输出图像与其他各种开源模型(包括 SDXL、SDXL Turbo、Stable Cascade、Playground v2.5 和 Pixart-α)以及闭源模型(如 DALL-E 3、Midjourney v6 和 Ideogram v1)进行了比较,以便根据人类反馈来评估性能。在这些测试中,人类评估员从每个模型中获得输出示例,并根据模型输出在多大程度上遵循所给提示的上下文(prompt following)、在多大程度上根据提示渲染文本(typography)以及哪幅图像具有更高的美学质量(visual aesthetics)来选择最佳结果。

图片

                              以 SD3 为基准,这个图表概述了它在基于人类对视觉美学、提示遵循和文字排版的评估中的胜率。

从测试结果来看,作者发现 Stable Diffusion 3 在上述所有方面都与当前最先进的文本到图像生成系统相当,甚至更胜一筹。

在消费级硬件上进行的早期未优化推理测试中,最大的 8B 参数 SD3 模型适合 RTX 4090 的 24GB VRAM,使用 50 个采样步骤生成分辨率为 1024x1024 的图像需要 34 秒。

图片

此外,在最初发布时,Stable Diffusion 3 将有多种变体,从 800m 到 8B 参数模型不等,以进一步消除硬件障碍。

图片

图片

更多细节请参考原论文。

参考链接:https://stability.ai/news/stable-diffusion-3-research-paper

产业Stability AIStable Diffusion 3
相关数据
权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

参数模型技术

在统计学中,参数模型是可以使用有限数量的参数来描述的分布类型。 这些参数通常被收集在一起以形成单个k维参数矢量θ=(θ1,θ2,...,θk)。

文本到图像生成技术

文本到图像生成是从文本描述或标题生成图像的任务。

推荐文章
暂无评论
暂无评论~