Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

Mamba论文为什么没被ICLR接收?AI社区沸腾了

基于 Mamba 的创新正不断涌现,但原论文却被 ICLR 放到了「待定区」。

2023 年,Transformer 在 AI 大模型领域的统治地位被撼动了。发起挑战的新架构名叫「Mamba」,它是一种选择性状态空间模型( selective state space model),在语言建模方面可以媲美甚至击败 Transformer。而且,它可以随上下文长度的增加实现线性扩展,其性能在实际数据中可提高到百万 token 长度序列,并实现 5 倍的推理吞吐量提升。

在发布之后的一个多月里,Mamba 逐渐展现出自己的影响力,衍生出了 MoE-Mamba、Vision Mamba、VMamba、U-Mamba、MambaByte 等多项工作,在克服 Transformer 短板方面表现出了越来越大的潜力。

但这样一颗冉冉升起的「新星」,却在 2024 年的 ICLR 会议中遭遇了滑铁卢。最新的公开结果显示,Mamba 的论文至今还没有被大会接收,我们只能在 Decision Pending(待定)一栏看到它的身影(可能是延迟决定,也可能是被拒)。

图片

总体来看,给 Mamba 打分的总共有四位审稿人,他们分别给出了 8/8/6/3 的打分。有人表示,如果拿到这样的分数还被拒,那确实是一件很奇怪的事情。

图片

要弄清其中的缘由,我们还得看一下打出低分的审稿人是怎么说的。

论文审稿页面:https://openreview.net/forum?id=AL1fq05o7H

为什么「not good enough」?

在评审反馈中,给出「3: reject, not good enough」打分的审稿人解释了自己对于 Mamba 的几点意见:

对模型设计的想法:

  • Mamba 的动机是解决递归模型的缺点,同时提高基于注意力模型的效率。有很多研究都是沿着这个方向进行的:S4-diagonal [1]、SGConv [2]、MEGA [3]、SPADE [4],以及许多高效的 Transformer 模型(如 [5])。所有这些模型都达到了接近线性的复杂度,作者需要在模型性能和效率方面将 Mamba 与这些作品进行比较。关于模型性能,一些简单的实验(如 Wikitext-103 的语言建模)就足够了。

  • 许多基于注意力的 Transformer 模型显示出长度泛化能力,即模型可以在较短的序列长度上进行训练,并在较长的序列长度上进行测试。这方面的例子包括相对位置编码(T5)和 Alibi [6]。由于 SSM 一般都是连续的,那么 Mamba 是否具有这种长度泛化能力呢?

对实验的想法:

  • 作者需要与更强的基线进行比较。作者表示 H3 被用作模型架构的动机,然而他们并没有在实验中与 H3 进行比较。根据 [7] 中的表 4,在 Pile 数据集上,H3 的 ppl 分别为 8.8(1.25 M)、7.1(3.55 M)和 6.0(1.3B),大大优于 Mamba。作者需要展示与 H3 的比较。

  • 对于预训练模型,作者只展示了零样本推理的结果。这种设置相当有限,结果不能很好地支持 Mamba 的有效性。我建议作者进行更多的长序列实验,比如文档摘要,输入序列自然会很长(例如,arXiv 数据集的平均序列长度大于 8k)。

  • 作者声称其主要贡献之一是长序列建模。作者应该在 LRA(Long Range Arena)上与更多基线进行比较,这基本上是长序列理解的标准基准

  • 缺少内存基准。尽管第 4.5 节的标题是「速度和内存基准」,但只介绍了速度比较。此外,作者应提供图 8 左侧更详细的设置,如模型层、模型大小、卷积细节等。作者能否提供一些直观信息,说明为什么当序列长度非常大时,FlashAttention 的速度最慢(图 8 左)?

此外,另一位审稿人也指出 Mamba 存在的不足:该模型在训练过程中仍然像 Transformers 一样具有二次内存需求。

图片

作者:已修改,求审阅

汇总所有审稿人的意见之后,作者团队也对论文内容进行了修改和完善,补充了新的实验结果和分析:

  • 增加了 H3 模型的评估结果

作者下载了大小为 125M-2.7B 参数的预训练 H3 模型,并进行了一系列评估。Mamba 在所有语言评估中都明显更胜一筹,值得注意的是,这些 H3 模型是使用二次注意力的混合模型,而作者仅使用线性时间 Mamba 层的纯模型在各项指标上都明显更优。

与预训练 H3 模型的评估对比如下:

图片
  • 将完全训练过的模型扩展到更大的模型规模

如下图所示,与根据相同 token 数(300B)训练的 3B 开源模型相比,Mamba 在每个评估结果上都更胜一筹。它甚至可以与 7B 规模的模型相媲美:当将 Mamba(2.8B)与 OPT、Pythia 和 RWKV(7B)进行比较时,Mamba 在每个基准上都获得了最佳平均分和最佳 / 次佳得分。

图片
  • 展示了超出训练长度的长度外推结果

作者附上了一张评估预训练 3B 参数语言模型长度外推的附图:

图片

图中绘出了每个位置的平均损失(对数可读性)。第一个 token 的困惑度很高,因为它没有上下文,而 Mamba 和基线 Transformer(Pythia)的困惑度在训练上下文长度(2048)之前都有所提高。有趣的是,Mamba 的可解性在超过其训练上下文后有了显著提高,最高可达 3000 左右的长度。

作者强调,长度外推并不是本文模型的直接动机,而是将其视为额外功能:

  1. 这里的基线模型(Pythia)在训练时并没有考虑长度外推法,或许还有其他 Transformer 变体更具通用性(例如 T5 或 Alibi 相对位置编码)。

  2. 没有发现任何使用相对位置编码在 Pile 上训练的开源 3B 模型,因此无法进行这种比较。

  3. Mamba 和 Pythia 一样,在训练时没有考虑长度外推法,因此不具有可比性。正如 Transformer 有很多技术(如不同的位置嵌入)来提高它们在长度概括等轴上的能力一样,在未来的工作中,为类似的能力推导出 SSM 特有的技术可能会很有趣。

  • 补充了 WikiText-103 的新结果

作者分析了多篇论文的结果,表明 Mamba 在 WikiText-103 上的表现明显优于其他 20 多个最新的次二次序列模型。

图片

图片

图片

尽管如此,两个月过去了,这篇论文还处于「Decision Pending」流程中,没有得到「接收」或者「拒绝」的明确结果。

被顶会拒绝的那些论文

在各大 AI 顶会中,「投稿数量爆炸」都是一个令人头疼的问题,所以精力有限的审稿人难免有看走眼的时候。这就导致历史上出现了很多著名论文被顶会拒绝的情况,包括 YOLO、transformer XL、Dropout支持向量机(SVM)、知识蒸馏、SIFT,还有 Google 搜索引擎的网页排名算法 PageRank(参见:《大名鼎鼎的 YOLO、PageRank 影响力爆棚的研究,曾被 CS 顶会拒稿》)。

甚至,身为深度学习三巨头之一的 Yann LeCun 也是经常被拒的论文大户。刚刚,他发推文说,自己被引 1887 次的论文「Deep Convolutional Networks on Graph-Structured Data」也被顶会拒绝了。

图片

在 ICML 2022 期间,他甚至「投了三篇,被拒三篇」。

图片

所以,论文被某个顶会拒绝并不代表没有价值。在上述被拒的论文中,很多论文选择了转投其他会议,并最终被接收。因此,网友建议 Mamba 转投陈丹琦等青年学者组建的 COLM。COLM 是一个专注于语言建模研究的学术场所,专注于理解、改进和评论语言模型技术的发展,或许对于 Mamba 这类论文来说是更好的选择。

图片

不过,无论 Mamba 最终能否被 ICLR 接收,它都已经成为一份颇具影响力的工作,也让社区看到了冲破 Transformer 桎梏的希望,为超越传统 Transformer 模型的探索注入了新的活力。

参考阅读:

五倍吞吐量,性能全面包围 Transformer:新架构 Mamba 引爆 AI 圈

挑战 Transformer 的 Mamba 是什么来头?作者博士论文理清 SSM 进化路径

谁能撼动 Transformer 统治地位?Mamba 作者谈 LLM 未来架构

MoE 与 Mamba 强强联合,将状态空间模型扩展到数百亿参数

Mamba 可以替代 Transformer,但它们也能组合起来使用

视觉 Mamba 来了:速度提升 2.8 倍,内存能省 87%

视觉 Mamba 模型的 Swin 时刻,中国科学院、华为等推出 VMamba

产业ICLRTransformerMamba
相关数据
华为机构

华为创立于1987年,是全球领先的ICT(信息与通信)基础设施和智能终端提供商。

https://www.huawei.com/cn/
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

Dropout技术

神经网络训练中防止过拟合的一种技术

基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

YOLO技术

YOLO 模型最早是由 Joseph Redmon 等人在 2015 年发布的,并在随后的两篇论文中进行了修订。

支持向量机技术

在机器学习中,支持向量机是在分类与回归分析中分析数据的监督式学习模型与相关的学习算法。给定一组训练实例,每个训练实例被标记为属于两个类别中的一个或另一个,SVM训练算法创建一个将新的实例分配给两个类别之一的模型,使其成为非概率二元线性分类器。SVM模型是将实例表示为空间中的点,这样映射就使得单独类别的实例被尽可能宽的明显的间隔分开。然后,将新的实例映射到同一空间,并基于它们落在间隔的哪一侧来预测所属类别。

知识蒸馏技术

Hinton 的工作引入了知识蒸馏压缩框架,即通过遵循“学生-教师”的范式减少深度网络的训练量,这种“学生-教师”的范式,即通过软化“教师”的输出而惩罚“学生”。为了完成这一点,学生学要训练以预测教师的输出,即真实的分类标签。这种方法十分简单,但它同样在各种图像分类任务中表现出较好的结果。

语言模型技术

统计式的语言模型是借由一个几率分布,而指派几率给字词所组成的字串。语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。

推荐文章
暂无评论
暂无评论~