
论文链接:https://arxiv.org/abs/2307.02457 代码链接:https://github.com/TencentARC/DeSRA

第一列:低清输入;第二列:现有超分方法引起瑕疵;第三列:DeSRA 检测出瑕疵区域;第四列:DeSRA 去除瑕疵
GAN 训练出现的瑕疵(GAN-training artifacts):出现在训练阶段,主要是由于训练时网络优化的不稳定和在同分布数据上的 SR 的 ill-pose 导致。在有干净的高清图像存在的情况下,可以在训练过程中对这些瑕疵加以约束,进而缓解瑕疵的生成,如 LDL [3]。 GAN 推理出现的瑕疵(GAN-inference artifacts):出现在推理阶段,这些伪影通常是在真实世界未见过的数据中出现的。这些瑕疵通常不在训练数据的分布中,并不会在训练阶段出现。因此,通过改善训练过程的方法(例如 LDL [3])无法解决这些瑕疵问题。

这些瑕疵不会出现在预训练的 MSE-SR 模型中。 这些瑕疵很明显且面积较大,能够很容易被人眼捕捉到。上图展示了一些包含这些瑕疵的样例。
局部纹理复杂性:局部区域 P 内像素强度的标准差 σ(i, j) 来表示局部纹理

绝对纹理差异 d:两个局部区域的标准差(x 表示 GAN-SR 区域,y 表示 MSE-SR 区域)

相对纹理差异 d’:

归一化到 [0, 1]:

引入一个常数 C:处理分母相对较小的情况









由于缺乏真实世界低分辨率数据的高清参考图片,经典指标如 PSNR、SSIM 无法采用。因此,研究团队考虑三个指标来评估检测结果,包括 1) 检测到的瑕疵区域与实际的(人工标注的)瑕疵区域之间的交并比(IoU),2) 检测结果的精确度和 3) 检测结果的召回率。当用 A 和 B 表示特定区域 z 的检测到的瑕疵区域和实际的瑕疵区域时,IoU 定义为:












