Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

王楷编译

在种植蘑菇计算机的实验室里,科学家用菌丝体实现神经形态电路

乍一看,非传统计算实验室看起来就像一个普通的工作空间,其干净光滑的台面上排列摆放着计算机和科学仪器。但如果你仔细观察,就会发现有一些异常现象。

最近,一项公开分享的研究视频就显示了些许怪异之处:在凌乱的桌子上,有一些大型塑料容器,电极从泡沫状的物质中伸出,还有一块上面长着微小平菇的巨大主板。

图片

当然,这个实验室并不是要重现《最后生还者》中的场景,这部作品中的研究人员一直致力于研究上面提到的那种东西。在 2001 年,该想法就出现了,相信下个世纪的计算机将由化学或生命系统或是湿件组成,它们将与硬件和软件协同工作。

为什么这么说? 

理论上,将复杂的动力学和系统架构集成到计算基础设施中,可以让它用新的方式处理和分析信息。从基于实验生物学的算法以及微生物传感器和康普茶(又名红茶菌)电路板的原型中可以看出,这绝对是一个近期方取得进展的想法。

换句话说,他们试图想看看蘑菇是否可以执行计算和传感功能。

图片一块蘑菇主板。 

关于真菌计算机,其中的菌丝体(一种真菌的分支,拥有网状根结构)可以充当导体以及计算机中的电子元件(蘑菇只是真菌的子实体)。它们可以接收和发送电信号,并保存记忆。

西英格兰大学非传统计算实验室主任 Andrew Adamatzky 说:「我将菌丝体培养物与木屑混合,然后将其放入封闭的塑料盒中,让菌丝体得以在基质中繁殖,这样一切看起来都是白色的。然后我们插入电极并记录菌丝体的电活动。也就是说,通过刺激,它变成了电活动,而后我们观测到了反应。」他还指出,这是英国唯一一所存在化学、液体或生物物质的计算机科学系湿实验室。

图片准备记录牡蛎真菌生长繁殖的碎屑中的电阻动态。

经典计算机将问题视为二进制数:1 和 0,这代表着这些设备所采用的传统方法。然而,该系统并不是总能捕捉到现实世界中的大多数动态。这就是研究人员正在研究量子计算机(可以更好地模拟分子)和基于活体脑细胞的芯片(可以更好地模拟神经网络)等技术的原因,这些技术可以以不同的方式表示和处理信息,使用一系列复杂的多维函数,并为某些问题提供更精确的计算。

科学家们早已知道,蘑菇会通过一种「互联网」般的通信方式与环境和周围的生物保持联系。你可能已有所耳闻,这种互联网被称为「木维网」(wood wide web)。通过破译真菌用此生物网络发送信号的语言,科学家们不仅可以深入了解地下生态系统的状态,还可以充分利用它们来改进我们自己的信息系统。

图片冬虫夏草真菌子实体的插图。

蘑菇计算机可以提供一些优于传统计算机的好处。虽然它们永远无法与当今现代机器的速度相提并论,但它们可以具有更高的容错率(它们可以自我再生)、可重新配置(它们自然生长和进化)并且消耗极少的能量。

在偶然发现蘑菇之前,从 2006 年到 2016 年,Adamatzky 都在从事黏菌(Slime mode)计算机的研究 —— 是的,这涉及到使用黏菌来解决计算问题。绒泡菌属,在科学上被称为黏菌,是一种类似变形虫的生物,其质量无定形地分布在整个空间里。

黏菌是「智能的」,这意味着它们可以找到解决问题的方法,比如在迷宫中找到最短路径,而无需程序员给出确切的指示或参数。然而,它们也可以通过不同类型的刺激来得到控制,并被用于模拟电路和电子产品的基本构建 —— 逻辑门。

图片记录牡蛎真菌生长繁殖。 

黏菌的大部分工作都是针对网络设计中重要被称为「Steiner 树」或「生成树」问题进行的,并通过使用寻路优化算法来解决这些问题。「通过黏菌,我们模仿了小径和马路。我们甚至出版了一本关于道路交通网络生物活性评价的书,」Adamatzky 说,「我们还解决了计算几何中的许多问题,此外还使用黏菌来控制机器人。」

当结束自己的黏菌项目时,Adamatzky 想知道如果他们开始研究蘑菇是否会发生什么有趣的事情,蘑菇是一种与绒泡菌既相似又截然不同的有机体。「实际上,我们发现蘑菇会产生类似动作电位的脉冲, 与神经元产生的脉冲相同,」他说。「我们是第一个报告通过微电极测量真菌脉冲活动的实验室,也是第一个开发真菌计算和真菌电子器件的实验室。」

图片使用脉冲活动来制作门(gate)的一个示例。 

在大脑中,神经元通过脉冲活动和脉冲模式来传递信号,这种特性已被模仿用以制作人工神经网络。菌丝体做的事情正与此类似。这意味着研究人员可以将脉冲的存在或不存在作为 0 或 1,并对检测到的脉冲的不同时间点和空间位置点进行编码,使其与计算机编程语言中看到的各种门(gate)相关联。此外,如果在两个独立不同的点刺激菌丝体,那么它们之间的电导率就会增加,那么它们之间的交流会更快、更可靠,从而使得记忆被建立。这就像脑细胞形成习惯的过程。

具有不同几何形状的菌丝体可以计算不同的逻辑功能,并且它们可以根据从中接收到的电响应来绘制出这些电路。「如果你发送电子,它们就会出现脉冲,」Adamatzky 说。「实现神经形态电路是可能的,可以说,我正计划用蘑菇来制作大脑。」

图片在塑造大脑时注入了化学物质的木碎屑。安德鲁・阿达马茨基( Andrew Adamatzky)

到目前为止,他们已经研究过牡蛎真菌 (Pleurotus djamor)、幽灵真菌 (Omphalotus nidiformis)、支架真菌 (无柄灵芝:Ganoderma resinaceum)、金针菇 (Flammulina velutipes)、裂褶菌 (Schizophyllum commune) 和冬虫夏草 (Cordyceps militari) .

「现在仅仅是可行性研究, 我们只是在证明其实现计算是可能的,而且用菌丝体实现基本逻辑电路和基本电子电路也是可能的,」Adamatzky 说。「未来,我们可以生产出更先进的菌丝体计算机和控制设备。」

入门蘑菇主板
相关数据
参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

逻辑技术

人工智能领域用逻辑来理解智能推理问题;它可以提供用于分析编程语言的技术,也可用作分析、表征知识或编程的工具。目前人们常用的逻辑分支有命题逻辑(Propositional Logic )以及一阶逻辑(FOL)等谓词逻辑。

生成树技术

在图论的数学领域中,如果连通图 G的一个子图是一棵包含G 的所有顶点的树,则该子图称为G的生成树(SpanningTree)。生成树是连通图的包含图中的所有顶点的极小连通子图。图的生成树不惟一。从不同的顶点出发进行遍历,可以得到不同的生成树。

神经元技术

(人工)神经元是一个类比于生物神经元的数学计算模型,是神经网络的基本组成单元。 对于生物神经网络,每个神经元与其他神经元相连,当它“兴奋”时会向相连的神经元发送化学物质,从而改变这些神经元的电位;神经元的“兴奋”由其电位决定,当它的电位超过一个“阈值”(threshold)便会被激活,亦即“兴奋”。 目前最常见的神经元模型是基于1943年 Warren McCulloch 和 Walter Pitts提出的“M-P 神经元模型”。 在这个模型中,神经元通过带权重的连接接处理来自n个其他神经元的输入信号,其总输入值将与神经元的阈值进行比较,最后通过“激活函数”(activation function)产生神经元的输出。

推荐文章
暂无评论
暂无评论~