Dragon Lake Parking (DLP) 数据集以无人机正射航拍视角,提供了大量经过标注的高清 4K 视频和轨迹数据,记录了在停车场环境内,不同类型的车辆、行人和自行车的运动及交互行为。数据集时长约 3.5 小时,采样率为 25Hz,覆盖区域面积约为 140 m x 80 m,包含约 400 个停车位,共记录了 5188 个主体。数据集提供两种格式:JSON 和原视频 + 标注,可服务的研究方向包括:大规模高精度目标识别和追踪、空闲车位检测、车辆和行人的行为和轨迹预测、模仿学习等。
停车场内的交通规则和车道线要求并不严格,车辆也经常随意行驶 “抄近路” 为了完成泊车任务,车辆需要完成较为复杂的泊车动作,包括频繁的倒车、停车、转向等。在驾驶员经验不足的情况下,泊车可能成为一个漫长的过程 停车场内障碍物较多且杂乱,车间距离较近,稍不留神就可能导致碰撞和剐蹭 停车场内行人往往随意穿行,车辆需要更多的避让动作
论文链接:https://arxiv.org/abs/2204.10777 数据集主页、试用和下载申请:https://sites.google.com/berkeley.edu/dlp-dataset (如无法访问,可尝试备用页面 https://cutt.ly/dlp-notion ) 数据集 Python API:https://github.com/MPC-Berkeley/dlp-dataset
个体(Agent):每个个体(Agent)即为一个在当前场景(Scene)下运动的物体,具备几何形状、类型等属性,其运动轨迹被储存为一个包含实例(Instance)的链表(Linked List) 实例(Instance):每个实例(Instance)即为一个个体(Agent)在一帧(Frame)中的状态,包含其位置、转角、速度和加速度。每个实例都包含指向该个体在前一帧和后一帧下实例的指针 帧(Frame):每一帧(Frame)即为一个采样点,其包含当前时间下所有可见的实例(Instance),和指向前一帧和后一帧的指针 障碍物(Obstacle):障碍物即为在此次记录中完全没有移动的物体,包含各个物体的位置、转角和几何尺寸 场景(Scene):每个场景(Scene)对应于一个录制的视频文件,其包含指针,指向该录制的首帧和尾帧、所有个体(Agent)和所有障碍物(Obstacle)
作为首个针对泊车场景的高精度数据集,Dragon Lake Parking (DLP) 数据集可为该场景下大规模目标识别和追踪、空闲车位检测、车辆和行人的行为和轨迹预测、模仿学习等研究提供数据和 API 支持 通过使用 CNN 和 Transformer 架构,ParkPredict + 模型在泊车场景下的行为和轨迹预测中展现除了良好的能力 Dragon Lake Parking (DLP) 数据集已开放试用和申请,可通过访问数据集主页 https://sites.google.com/berkeley.edu/dlp-dataset 了解详细信息(如无法访问,可尝试备用页面 https://cutt.ly/dlp-notion )