Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

小舟、陈萍报道

Nature子刊 | 像婴儿一样学习,DeepMind新模型28小时学会物理世界规则

从 AlphaFold 到数学推理,DeepMind 一直在尝试将 AI 和基础科学结合。

现在,DeepMind 又创建了一个可以学习简单物理规则的新模型。

发育心理学家测试分析了婴儿如何通过目光来跟随物体的运动。例如,当播放视频中有一个球突然消失时,孩子们会表现出惊讶。

DeepMind 的计算机科学家 Luis Piloto 及其同事希望为人工智能 (AI) 开发类似的测试。该团队使用立方体和球等简单物体的动画视频训练了一个神经网络,该模型通过从大量数据中发现模式来学习。研究论文于 7 月 11 日发表在《Nature Human Behaviour》上。

图片

  • 论文地址:https://www.nature.com/articles/s41562-022-01394-8
  • 数据集地址:https://github.com/deepmind/physical_concepts

该模型通过自动编码和跟踪对象进行物理学习,因此命名为 PLATO (Physics Learning through Auto-encoding and Tracking Objects)。PLATO 接收来自视频的原始图像和突出显示场景中每个对象目标的图像版本。PLATO 旨在开发对象物理特性的内部表征,例如它们的位置和速度。

该系统接受了大约 30 个小时的视频训练,这些视频展示了简单的运动机制(例如一个球从斜坡上滚下来),并开发了预测这些对象在不同情况下行为的能力。特别地,PLATO 学习了连续性和稳固性,保证目标的轨迹是不间断的,物体形状是持久的。随着视频的播放,模型的预测会变得更加准确。

当播放带有「不可能」事件的视频时,例如一个物体突然消失,PLATO 可以度量视频和它自己的预测之间的差异,从而提供一种「惊讶」的衡量标准。

Piloto 说:「PLATO 并非设计为婴儿行为模型,但它可以测试关于人类婴儿如何学习的假设。我们希望认知科学家最终可以使用它来模拟婴儿的行为。」

英属哥伦比亚大学的计算机科学家 Jeff Clune 表示,「将 AI 与人类婴儿的学习方式进行比较是一个重要的研究方向。PLATO 的研究者手工设计了许多赋予人工智能模型优势的先验知识。」Clune 等研究人员正试图让程序开发自己的算法来理解物理世界。

运用发展心理学的知识

为了在 AI 系统中追求更丰富的物理直觉,DeepMind 的研究团队从发展心理学中汲取灵感。研究团队构建了一个深度学习系统,该系统整合了发展心理学的核心见解,即物理学是在离散对象及其相互作用的层面上理解的。

直觉物理学的核心依赖于一组离散的概念(例如,对象的持久性、稳固性、连续性等),可以区分、操作和单独探测。传统的 AI 学习直观物理的标准方法通过视频或状态预测指标、二元结果预测、问答性能或强化学习任务来学习物理世界。这些方法似乎需要理解直觉物理学的某些方面,但并没有明确地操作或战略性地探索一组明确的概念。

另一方面,发展心理学认为一个物理概念对应于一组未来如何展开的期望。例如人们期望物体不会神奇地从一个地方突然传送到另一个地方,而是通过时间和空间追踪连续的路径,这就有了连续性的概念。因此,有一种测量特定物理概念知识的方法:违反期望 (VoE) 范式。

使用 VoE 范式探索特定概念时,研究人员向婴儿展示视觉上相似的阵列(称为探测(probe)),这些阵列与物理概念一致(物理上可能)或不一致(物理上不可能)。在这个范式中,「惊讶」是通过凝视持续时间来衡量的。

图片

方法介绍

首先,DeepMind 提出了一个非常丰富的视频语料库 ——Physical Concepts 数据集。该数据集包含 VoE 探测视频,针对五个重要的物理概念,这些概念在发展心理学中被视为核心要素,包括连续性、目标持久性和稳固性。第四种是不可变性,用于捕捉某些目标属性 (例如形状) 不会改变的概念;第五个概念是方向惯性,涉及到运动物体在与惯性原理一致的方向上发生变化的期望。

最重要的是 Physical Concepts 数据集还包括一个单独的视频语料库作为训练数据。这些视频展示了各种程序生成的物理事件。

图片

图 2:用于训练模型的视频数据集示例

PLATO 模型架构

Deepmind 旨在建立一个能够学习直观物理学的模型,并剖析模型实现这种能力的原因。PLATO 模型中实例化了 AI 领域一些先进的系统。

首先是目标个性化过程。目标个性化过程将视觉的连续感知输入切割成一组离散的实体,其中每个实体都有一组对应的属性。在 PLATO 中,每个分段的视频帧通过感知模块分解为一组目标代码(图 3a-c),从而实现从视觉输入到个体目标的映射。PLATO 没有学习分割场景,但给定一个分割目标,其学习一个压缩表示。

其次,目标跟踪(或目标索引)为每个目标分配一个索引,从而实现跨时间目标感知和动态属性计算之间的对应关系(图 3b,c)。在 PLATO 中,目标代码在目标缓冲区中的帧上累积和跟踪(图 3d)。

最后一个组件是这些被跟踪目标的关系处理,这一过程受到发展心理学中提出的「物理推理系统」的启发,该系统可以动态地处理物体的表征,产生新的表征,这些表征会受到物体与其他物体之间关系和互动的影响。

PLATO 学习目标内存和目标感知历史之间的交互作用(图 3d),以生成针对下一个目标的预测视频帧并更新基于目标的内存。

图片

图 3:PLATO 包括两个组件:感知模块(左)和动态预测(右)

实验结果

在测试时,当使用五种不同的随机种子进行训练时,PLATO 在所有五个探测类别中都显示出强大的 VoE 效果。

图片

图 5:PLATO 在 Physical Concepts 数据集的探测中显示出稳健的效果。

Physical Concepts 数据集中的训练语料库共包含 300000 个视频。用保守计算方法,大约需要 52 天的持续视觉体验。从 AI 和开发的角度来看,这存在一个问题,即在测试中产生 VoE 效果实际上需要多少训练数据。为了评估这一点,Deepmind 在大小逐渐减小的数据集上训练了三个 PLATO 动态预测器的随机种子(图 6),计算了所有五个探测类别的 VoE 效应的总平均值。

在仅对 50000 个示例进行训练后,研究结果表明,在使用少至 50000 个示例(相当于 28 小时的视觉体验)进行训练后,Deepmind 的模型中出现了稳健的 VoE 效果。

图片

图 6:PLATO 只需短短 28 小时的视觉体验就能显示出强大的效果。

泛化测试:Deepmind 采用 ADEPT 数据集,该数据集旨在探索直观的物理知识。如图 7 所示,PLATO 对所有三个探测类别都显示出清晰的 VoE 效果。

图片

图 7:PLATO 展示了在不可见目标和动态上的鲁棒效果,而无需任何重新训练。

更多内容,请查看原论文。

参考内容:
https://www.nature.com/articles/d41586-022-01921-7
https://www.deepmind.com/publications/learning-intuitive-physics-through-objects
理论物理学模型DeepMind
相关数据
DeepMind机构

DeepMind是一家英国的人工智能公司。公司创建于2010年,最初名称是DeepMind科技(DeepMind Technologies Limited),在2014年被谷歌收购。在2010年由杰米斯·哈萨比斯,谢恩·列格和穆斯塔法·苏莱曼成立创业公司。继AlphaGo之后,Google DeepMind首席执行官杰米斯·哈萨比斯表示将研究用人工智能与人类玩其他游戏,例如即时战略游戏《星际争霸II》(StarCraft II)。深度AI如果能直接使用在其他各种不同领域,除了未来能玩不同的游戏外,例如自动驾驶、投资顾问、音乐评论、甚至司法判决等等目前需要人脑才能处理的工作,基本上也可以直接使用相同的神经网上去学而习得与人类相同的思考力。

https://deepmind.com/
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

感知技术

知觉或感知是外界刺激作用于感官时,脑对外界的整体的看法和理解,为我们对外界的感官信息进行组织和解释。在认知科学中,也可看作一组程序,包括获取信息、理解信息、筛选信息、组织信息。与感觉不同,知觉反映的是由对象的各样属性及关系构成的整体。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

映射技术

映射指的是具有某种特殊结构的函数,或泛指类函数思想的范畴论中的态射。 逻辑和图论中也有一些不太常规的用法。其数学定义为:两个非空集合A与B间存在着对应关系f,而且对于A中的每一个元素x,B中总有有唯一的一个元素y与它对应,就这种对应为从A到B的映射,记作f:A→B。其中,y称为元素x在映射f下的象,记作:y=f(x)。x称为y关于映射f的原象*。*集合A中所有元素的象的集合称为映射f的值域,记作f(A)。同样的,在机器学习中,映射就是输入与输出之间的对应关系。

语料库技术

语料库一词在语言学上意指大量的文本,通常经过整理,具有既定格式与标记;事实上,语料库英文 "text corpus" 的涵意即为"body of text"。

先验知识技术

先验(apriori ;也译作 先天)在拉丁文中指“来自先前的东西”,或稍稍引申指“在经验之前”。近代西方传统中,认为先验指无需经验或先于经验获得的知识。先验知识不依赖于经验,比如,数学式子2+2=4;恒真命题“所有的单身汉一定没有结婚”;以及来自纯粹理性的推断“本体论证明”

强化学习技术

强化学习是一种试错方法,其目标是让软件智能体在特定环境中能够采取回报最大化的行为。强化学习在马尔可夫决策过程环境中主要使用的技术是动态规划(Dynamic Programming)。流行的强化学习方法包括自适应动态规划(ADP)、时间差分(TD)学习、状态-动作-回报-状态-动作(SARSA)算法、Q 学习、深度强化学习(DQN);其应用包括下棋类游戏、机器人控制和工作调度等。

推荐文章
暂无评论
暂无评论~