论文链接:https://arxiv.org/abs/2206.00272 PyTorch 代码:https://github.com/huawei-noah/CV-Backbones MindSpore 代码:https://gitee.com/mindspore/models/tree/master/research/cv/ViG
Auto Byte
专注未来出行及智能汽车科技
微信扫一扫获取更多资讯
Science AI
关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展
微信扫一扫获取更多资讯
华为诺亚实验室的研究员发现图神经网络(GNN)也能做视觉骨干网络。将图像表示为图结构,通过简洁高效的适配,提出一种新型视觉网络架构 ViG,表现优于传统的卷积网络和 Transformer。在 ImageNet 图像识别任务,ViG 在相似计算量情况下 Top-1 正确率达 82.1%,高于 ResNet 和 Swin Transformer。
图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。从数学角度来看,图像分割是将数字图像划分成互不相交的区域的过程。图像分割的过程也是一个标记过程,即把属于同一区域的像索赋予相同的编号。
在 计算网络中, 一个节点的激活函数定义了该节点在给定的输入或输入的集合下的输出。标准的计算机芯片电路可以看作是根据输入得到"开"(1)或"关"(0)输出的数字网络激活函数。这与神经网络中的线性感知机的行为类似。 一种函数(例如 ReLU 或 S 型函数),用于对上一层的所有输入求加权和,然后生成一个输出值(通常为非线性值),并将其传递给下一层。
一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。