Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

吴凌飞、崔鹏、裴健、赵亮联合撰写,一本书读懂图神经网络的基础、前沿、应用(免费下载)

这本书称得上是目前为止图神经网络领域最为全面的卓越之作。

近年来,图神经网络 (GNN) 领域取得了快速且惊人的进展。图神经网络,也称为图深度学习、图表示学习或几何深度学习,已成为机器学习尤其是深度学习中发展最快的研究课题之一。这一批涌现的图论深度学习交叉的研究也影响了其他科学领域,包括推荐系统计算机视觉自然语言处理归纳逻辑编程程序合成、软件挖掘、自动化规划、网络安全和智能交通。

虽然图神经网络已经获得了极大的关注,但在将其应用到其他领域时仍然面临着许多挑战,从对方法的理论理解到实际系统中的可扩展性和可解释性,从方法的健全性到在实际系统应用中的经验表现。尽管该领域实现了快速发展,从全局视角了解 GNN 的发展却始终极具挑战性。

为了弥合上述差距,吴凌飞、崔鹏、裴健、赵亮几位学者牵头编撰了一本图神经网络领域的综合性书籍。这本书历时近一年时间写作而成,全书由四大部分(引言,基础,前沿,应用)共 27 个章节组成,面向这一领域的高级本科生和研究生、博士后研究人员、讲师和行业从业者。

这是目前为止在图神经网络方面最为全面的一本书。本书涵盖了图神经网络的众多主题,从基础到前沿,从方法论到应用。这本书介绍了 GNN 的基本概念和算法、GNN 的研究前沿以及 GNN 的广泛应用和新兴应用。


书籍的英文版已经在多个平台开启预订,中文版书籍将在 2022 年中期正式出版。目前已有免费公开版可供阅读。

书籍开源网站地址: https://graph-neural-networks.github.io/index.html


目录

第一部分:引言


  • 第 1 章 表示学习

  • 第 2 章 图表示学习

  • 第 3 章 图神经网络


第二部分:基础

  • 第 4 章 用于节点分类图神经网络

  • 第 5 章 图神经网络的表达能力

  • 第 6 章 图神经网络:可扩展性

  • 第 7 章 图神经网络中的可解释性

  • 第 8 章 图神经网络:对抗鲁棒性


第三部分:前沿


  • 第 9 章 图神经网络图分类

  • 第 10 章 图神经网络:链接预测

  • 第 11 章 图神经网络图生成

  • 第 12 章 图神经网络:图变换

  • 第 13 章 图神经网络:图匹配

  • 第 14 章 图神经网络:图结构学习

  • 第 15 章 动态图神经网络

  • 第 16 章 异构图神经网络

  • 第 17 章 图神经网络:AutoML

  • 第 18 章 图神经网络自监督学习


第四部分:应用


  • 第 19 章 现代推荐系统中的图神经网络

  • 第 20 章 计算机视觉中的图神经网络

  • 第 21 章 自然语言处理中的图神经网络

  • 第 22 章 程序分析中的图神经网络

  • 第 23 章 软件挖掘中的图神经网络

  • 第 24 章 药物开发中基于 GNN 的生物医学知识图谱挖掘

  • 第 25 章 预测蛋白质功能和相互作用的图神经网络

  • 第 26 章 异常检测中的图神经网络

  • 第 27 章 城市智能中的图神经网络


作者介绍


吴凌飞博士现任京东硅谷研发中心首席科学家。吴博士曾经是 IBM T. J. Watson Research Center 研究科学家和团队带头人。吴博士在 2016 年从威廉玛丽大学取得计算机博士学位。他的研究内容包括机器学习表征学习自然语言处理

吴博士带领的 Graph4NLP (Deep Learning on Graphs for Natural Language Processing) 团队(12+ 研究科学家)致力于机器学习与文本数据挖掘领域的基础研究,并运用机器学习与文本数据挖掘方法解决实际问题。其学术成果先后发表在 NeurIPS, ICML, ICLR, ACL, EMNLP, KDD, AAAI, IJCAI 等国际顶级会议及期刊上,发表论文超过 80 多篇。代表作包括 IDGL, MGMN, Graph2Seq, GraphFlow。多项学术论文获得著名国际大会的最佳论文和最佳学术论文奖,包括 IEEE ICC 2019。

吴博士同时现任 IEEE 影响因子最高期刊之一 IEEE Transactions on Neural Networks and Learning Systems(TNNLS) 和 ACM SIGKDD 旗舰期刊 ACM Transactions on Knowledge Discovery from Data (TKDD) 的副主编。多次组织和担任国际顶级会议大会或者领域主席,如 AAAI, IJCAI, KDD, NeurIPS, ICLR, ICML, ACL, EMNLP。


崔鹏,清华大学计算机系长聘副教授。于 2010 年获得清华大学博士学位,研究兴趣包括因果正则机器学习(causally-regularized machine learning)、网络表示学习和社交动态建模。他在数据挖掘和多媒体领域知名会议和期刊上发表文章 100 多篇,近期研究获得 IEEE Multimedia Best Department Paper Award、ICDM 2015 最佳学生论文奖等多个奖项。2015 年,他获得 ACM 中国新星奖,2018 年获得 CCF-IEEE CS 青年科学家奖。目前,他是 ACM 和 CCF 杰出会员、IEEE 高级会员。


裴健数据科学、大数据、数据挖掘数据库系统等领域,是世界领先的研究学者,国际计算机协会(ACM)院士和国际电气电子工程师协会(IEEE)院士,擅长为数据密集型应用设计开发创新性的数据业务产品和高效的数据分析技术。因其在数据挖掘基础、方法和应用方面的杰出贡献,裴健曾获得数据科学领域技术成就最高奖 ACM SIGKDD Innovation Award(ACM SIGKDD 创新奖)和 IEEE ICDM Research Contributions Award(IEEE ICDM 研究贡献奖)。2018 年,裴健入职京东,任集团副总裁。此前,裴健教授还曾担任华为首席科学家。2019 年 9 月,裴健当选加拿大皇家学会院士。


赵亮现为埃默里大学担任计算机系助理教授,研究方向为数据挖掘机器学习和优化。此前曾在乔治梅森大学信息科技学院和计算机学院担任助理教授。2016 年秋,赵亮获得弗吉尼亚理工大学的博士学位。此外,赵亮曾获 2020 年美国自然科学基金委员会杰出青年奖(NSF CAREER AWARD)、2019 年 Jeffress Trust Award、2017 年弗吉尼亚理工大学计算机学院杰出博士奖,并入选 2016 年微软评选出的数据挖掘领域 20 位学术新星。他还获得过 ICDM 2019 会议的最佳论文奖项。

吴凌飞博士将于北京时间2月21日周一19:30 - 20:30,在机器之心机动组视频直播中分享「GNN的基础、前沿和应用」,敬请期待!
入门图神经网络
1
相关数据
清华大学机构

清华大学(Tsinghua University),简称“清华”,由中华人民共和国教育部直属,中央直管副部级建制,位列“211工程”、“985工程”、“世界一流大学和一流学科”,入选“基础学科拔尖学生培养试验计划”、“高等学校创新能力提升计划”、“高等学校学科创新引智计划”,为九校联盟、中国大学校长联谊会、东亚研究型大学协会、亚洲大学联盟、环太平洋大学联盟、清华—剑桥—MIT低碳大学联盟成员,被誉为“红色工程师的摇篮”。 清华大学的前身清华学堂始建于1911年,因水木清华而得名,是清政府设立的留美预备学校,其建校的资金源于1908年美国退还的部分庚子赔款。1912年更名为清华学校。1928年更名为国立清华大学。1937年抗日战争全面爆发后南迁长沙,与北京大学、南开大学组建国立长沙临时大学,1938年迁至昆明改名为国立西南联合大学。1946年迁回清华园。1949年中华人民共和国成立,清华大学进入了新的发展阶段。1952年全国高等学校院系调整后成为多科性工业大学。1978年以来逐步恢复和发展为综合性的研究型大学。

http://www.tsinghua.edu.cn/
相关技术
IBM机构

是美国一家跨国科技公司及咨询公司,总部位于纽约州阿蒙克市。IBM主要客户是政府和企业。IBM生产并销售计算机硬件及软件,并且为系统架构和网络托管提供咨询服务。截止2013年,IBM已在全球拥有12个研究实验室和大量的软件开发基地。IBM虽然是一家商业公司,但在材料、化学、物理等科学领域却也有很高的成就,利用这些学术研究为基础,发明很多产品。比较有名的IBM发明的产品包括硬盘、自动柜员机、通用产品代码、SQL、关系数据库管理系统、DRAM及沃森。

https://www.ibm.com/us-en/
相关技术
裴健人物

京东集团副总裁,加拿大一级研究讲座教授(大数据科学领域)、加拿大西蒙弗雷泽大学计算科学学院教授、统计与精算学系和健康科学院兼职教授,前华为首席科学家。裴健在数据科学、大数据、数据挖掘和数据库系统等领域,是世界领先的研究学者,擅长为数据密集型应用设计开发创新性的数据业务产品和高效的数据分析技术。他是国际计算机协会(ACM)院士和国际电气电子工程师协会(IEEE)院士,ACM SIGKDD(数据挖掘及知识发现专委会)现任主席。因其在数据挖掘基础、方法和应用方面的杰出贡献,裴健曾获得数据科学领域技术成就最高奖ACM SIGKDD Innovation Award(ACM SIGKDD创新奖)和IEEE ICDM Research Contributions Award(IEEE ICDM研究贡献奖)。

深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

数据分析技术

数据分析是一类统计方法,其主要特点是多维性和描述性。有些几何方法有助于揭示不同的数据之间存在的关系,并绘制出统计信息图,以更简洁的解释这些数据中包含的主要信息。其他一些用于收集数据,以便弄清哪些是同质的,从而更好地了解数据。 数据分析可以处理大量数据,并确定这些数据最有用的部分。

结构学习技术

结构化预测是监督学习,分类和回归的标准范式的一种推广。 所有这些可以被认为是找到一个能最大限度减少训练集损失的函数。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

数据科学技术

数据科学,又称资料科学,是一门利用数据学习知识的学科,其目标是通过从数据中提取出有价值的部分来生产数据产品。它结合了诸多领域中的理论和技术,包括应用数学、统计、模式识别、机器学习、数据可视化、数据仓库以及高性能计算。数据科学通过运用各种相关的数据来帮助非专业人士理解问题。

异常检测技术

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。 通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。 异常也被称为离群值、新奇、噪声、偏差和例外。

规划技术

人工智能领域的「规划」通常是指智能体执行的任务/动作的自动规划和调度,其目的是进行资源的优化。常见的规划方法包括经典规划(Classical Planning)、分层任务网络(HTN)和 logistics 规划。

表征学习技术

在机器学习领域,表征学习(或特征学习)是一种将原始数据转换成为能够被机器学习有效开发的一种技术的集合。在特征学习算法出现之前,机器学习研究人员需要利用手动特征工程(manual feature learning)等技术从原始数据的领域知识(domain knowledge)建立特征,然后再部署相关的机器学习算法。虽然手动特征工程对于应用机器学习很有效,但它同时也是很困难、很昂贵、很耗时、并依赖于强大专业知识。特征学习弥补了这一点,它使得机器不仅能学习到数据的特征,并能利用这些特征来完成一个具体的任务。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

知识图谱技术

知识图谱本质上是语义网络,是一种基于图的数据结构,由节点(Point)和边(Edge)组成。在知识图谱里,每个节点表示现实世界中存在的“实体”,每条边为实体与实体之间的“关系”。知识图谱是关系的最有效的表示方式。通俗地讲,知识图谱就是把所有不同种类的信息(Heterogeneous Information)连接在一起而得到的一个关系网络。知识图谱提供了从“关系”的角度去分析问题的能力。 知识图谱这个概念最早由Google提出,主要是用来优化现有的搜索引擎。不同于基于关键词搜索的传统搜索引擎,知识图谱可用来更好地查询复杂的关联信息,从语义层面理解用户意图,改进搜索质量。比如在Google的搜索框里输入Bill Gates的时候,搜索结果页面的右侧还会出现Bill Gates相关的信息比如出生年月,家庭情况等等。

推荐系统技术

推荐系统(RS)主要是指应用协同智能(collaborative intelligence)做推荐的技术。推荐系统的两大主流类型是基于内容的推荐系统和协同过滤(Collaborative Filtering)。另外还有基于知识的推荐系统(包括基于本体和基于案例的推荐系统)是一类特殊的推荐系统,这类系统更加注重知识表征和推理。

数据库技术

数据库,简而言之可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据运行新增、截取、更新、删除等操作。 所谓“数据库”系以一定方式储存在一起、能予多个用户共享、具有尽可能小的冗余度、与应用程序彼此独立的数据集合。

数据挖掘技术

数据挖掘(英语:data mining)是一个跨学科的计算机科学分支 它是用人工智能、机器学习、统计学和数据库的交叉方法在相對較大型的数据集中发现模式的计算过程。 数据挖掘过程的总体目标是从一个数据集中提取信息,并将其转换成可理解的结构,以进一步使用。

图论技术

图论是以“图”为研究对象的一个数学分支,是组合数学和离散数学的重要组成部分。图是用来对对象之间的成对关系建模的数学结构,由“顶点”(又称“节点”或“点”)以及连接这些顶点的“边”(又称“弧”或“线”)组成。值得注意的是,图的顶点集合不能为空,但边的集合可以为空。图可能是无向的,这意味着图中的边在连接顶点时无需区分方向。否则,称图是有向的。

归纳逻辑编程技术

归纳逻辑编程(ILP)是机器学习的一个子领域,它使用逻辑编程统一表示背景知识和假设。 例如给定已使用编码表示的背景知识和用逻辑数据库表示的一组示例,ILP系统将可以推导出假设的逻辑程序。

图神经网络技术

图网络即可以在社交网络或其它基于图形数据上运行的一般深度学习架构,它是一种基于图结构的广义神经网络。图网络一般是将底层图形作为计算图,并通过在整张图上传递、转换和聚合节点特征信息,从而学习神经网络基元以生成单节点嵌入向量。生成的节点嵌入向量可作为任何可微预测层的输入,并用于节点分类或预测节点之间的连接,完整的模型可以通过端到端的方式训练。

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

京东机构

京东(股票代码:JD),中国自营式电商企业,创始人刘强东担任京东集团董事局主席兼首席执行官。旗下设有京东零售、京东物流、京东科技子集团、印尼&泰国海外合资跨境电商等核心业务。2013年正式获得虚拟运营商牌照。2014年5月在美国纳斯达克证券交易所正式挂牌上市。 2016年6月与沃尔玛达成深度战略合作。

https://www.jd.com
相关技术
机器之心机构

机器之心,成立于2014年,是国内最具影响力、最专业、唯一用于国际品牌的人工智能信息服务与产业服务平台。目前机器之心已经建立起涵盖媒体、数据、活动、研究及咨询、线下物理空间于一体的业务体系,为各类人工智能从业者提供综合信息服务和产业服务。

https://www.jiqizhixin.com/
自监督学习技术

一个例子中的内容特别多,而用一个例子做一个任务,就等于把其他的内容浪费了,因此我们需要从一个样本中找出多个任务。比如说遮挡图片的一个特定部分,用没遮挡部分来猜遮挡的部分是一个任务。那么通过遮挡不同的部分,就可以用一个样本完成不同任务。Yann Lecun描述的这个方法被业界称作「自监督学习」

图分类技术

图分类是许多不同领域中实际应用的问题。为了解决这个问题,通常会计算某些图形统计数据(即图形特征),它们有助于区分不同类别的图形。在计算这些特征时,大多数现有方法会对全图进行处理。

节点分类技术

节点分类任务是算法必须通过查看其邻居的标签来确定样本的标记(表示为节点)的任务。

图生成技术

根据给定信息信息生成图表。

程序合成技术

在计算机科学中,程序合成是自动构建满足给定高级规范的程序的任务。

推荐文章
暂无评论
暂无评论~