Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

陈萍、杜伟报道

深度学习如炼丹,你有哪些迷信做法?网友:Random seed=42结果好

调参的苦与泪,还有那些「迷信的做法」。

每个机器学习领域的研究者都会面临调参过程的考验,当往往说来容易做来难。调参的背后往往是通宵达旦的论文研究与 GitHub 查阅,并需要做大量的实验,不仅耗时也耗费大量算力,更深深地伤害了广大工程师的头发。

图片

有人不禁要问:调参是门玄学吗?为什么模型明明调教得很好了,可是效果离我的想象总有些偏差。

近日,reddit 上一则帖子引发了网友热议,「机器学习调参领域有哪些迷信的看法或做法呢?

图片

原贴地址:https://www.reddit.com/r/MachineLearning/comments/rkewa3/d_what_are_your_machine_learning_superstitions/?sort=confidence

关于调参的那些「秘诀」

机器学习中,参数调整是一项必备技能,通过观察在训练过程中的监测指标如损失 loss 和准确率来判断当前模型处于什么样的训练状态,及时调整参数以更科学地训练模型能够提高资源利用率。

每个人都会根据自己的实际经验进行模型调参,最终,绝大多数研究者可能得出的经验就是:
  • Random seed = 0 得到坏的结果

  • Random seed = 42 得到好的结果

  • Even-valued k in k-Means = insightful segmentation

有人将这一经验总结奉为所谓的 ML「迷信做法」,但其实不然,几乎所有学者都这样做。

不过,也有网友对这一经验总结持怀疑态度:网友 @SlashSero 遗憾地表示,这种情况甚至会出现在非常有名的科学出版物上,尤其是在交叉验证不可行或者易受其他参数选择影响的机器学习应用中,因此参数优化(HPO)不可行。不妨看看 NeurIPS 会议论文有多少拥有真正透明的代码库和易于复现的交叉验证研究,以证实他们的工作较去年提升了 0.5-1% 的性能。

另外,很多时候出于对研究者的信任,但其实会导致新的深度学习模型在实践中并没有表现出明显优于传统模型的性能。我们应该看到,社区存在这样一种现状:花费大量时间确保模型真正兑现它所表现出的性能,并且可复现和透明,这是一项吃力不讨好的工作。消耗计算资源不说,还有可能失去在一个发展极快的领域发表论文和获得表彰的机会。

图片

为了实现模型最佳性能,各路网友也纷纷晒出自己的炼丹经验:有网友认为 Random seed 必须是 10 的倍数,最好是 1000(不过该回答遭到了别人的反驳)。

图片

除了 Random seed 设置外,有研究者分享了自己的一些科研小技巧。

模型的训练过程,近乎黑盒,假如期间发生程序错误,很难察觉到,有网友建议随时随地进行「print」是一个很好的习惯,在程序第一次运行时,一定要打印所有可能的东西,「print」能让你知道程序进行到哪一步,有没有陷入死循环...... 其实,绝大多数程序员都会这样做。

图片

除了「print」外,有人表示日志记录也非常有必要,在实验室做科研,有时为了跑一个程序,需要花费好几天的时间,但总有那么不顺心的地方,要么好久不断电的实验室突然断电,要么服务器崩了…… 所以随时随地保存日志也是每个程序员必备的,查看日志记录,你能发现程序运行到哪了,粗略估计模型性能,还能查看错误:

图片

还有网友晒出了自己的 dropout 经验,认为超过 20% 的 dropout 将使该模式难以恢复。不过这只是这位网友自己的经验,也有人表示自己采用 90% 的 dropout,模型性能最好。

图片

除此以外,有网友总结了批大小应该是 2 的幂次方。

图片

以上就是网友总结的一些 ML 炼丹小技巧。

玄学论文难复现

虽然调参有用,但网友 @ostrich-scalp 犀利地批驳道,「大多数论文的结果都是胡说八道,将我的职业生涯都用来实现这些工作并期望创建像模像样可用于生产的模型,这是一个极大的错误。」

图片

上面那位老哥 @SlashSero 接茬说道,「令人难以置信的是,ACM、IEEE、IAAA 和 NeurIPS 上发表的论文有多少完全只是出于对作者的信任。到现在为止,你可能希望所有知名期刊和会议都要求论文作者开源和复现代码,但这种情况只是例外。」

图片

显然,机器学习是一门技术。虽然神经网络黑箱的状态让可解释性受限,但我们可以在较高层面上通过经验解决面临的问题。我们需要加载数据,建立框架,让系统运行起来,设定度量标准,调整参数并分析误差,进行特征工程,结果可视化等等步骤。最终经过数次迭代直至推理的准确率不再提升。

那么为什么各种玄学现象仍然不断出现,拷问着我们的心灵?看来,我们对这门学科的了解还不够多。

不过请记住 NIPS 2017 大会上图灵奖得主 Judea Pearl 演讲的最后一页 Keynote:

图片

数据科学仅当能促进对数据的合理解读时才能被称为科学。

不过也不用怕,深度学习调参总还是有技巧可循的,大致可以总结如下。这些算不得迷信做法,仅供参考。
  • 寻找合适的学习率。作为一个非常重要的参数学习率面对不同规模、不同 batch-size、不同优化方式和不同数据集,它的最合适值都是不确定的。我们唯一可以做的,就是在训练中不断寻找最合适当前状态的学习率

  • 权重初始化。相比于其他的 trick 来说使用并不是很频繁。只有那些没有预训练模型的领域会自己初始化权重,或者在模型中去初始化神经网络最后那几个全连接层的权重。常用权重初始化算法是「kaiming_normal」或「xavier_normal」;

  • 数据集处理,主要有数据筛选和数据增强;

  • 多模型融合,这是论文刷结果的终极核武器,深度学习中一般有几种方式,比如同样的参数,不同的初始化方式;不同的参数,通过交叉验证选取最好的几组;不同的模型,进行线性融合,例如 RNN 和传统模型;

  • 余弦退火和热重启的随机梯度下降。余弦退火就是学习率类似余弦函数慢慢下降,热重启就是在学习的过程中,学习率慢慢下降然后突然再回弹 (重启) 然后继续慢慢下降;

  • 尝试过拟合一个小数据集。关闭正则化 / 随机失活 / 数据扩充,使用训练集的一小部分,让神经网络训练几个周期。确保可以实现零损失,如果没有,那么很可能什么地方出错了。

  • ……

调参路上各有各的「路数」,适合自己就好。

最后问一句,炼丹的你有哪些独门秘籍呢?

参考链接:

https://www.jiqizhixin.com/articles/2020-10-21-3

https://picture.iczhiku.com/weixin/message1609136710592.html


入门炼丹调参深度学习机器学习
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

超参数优化技术

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

数据科学技术

数据科学,又称资料科学,是一门利用数据学习知识的学科,其目标是通过从数据中提取出有价值的部分来生产数据产品。它结合了诸多领域中的理论和技术,包括应用数学、统计、模式识别、机器学习、数据可视化、数据仓库以及高性能计算。数据科学通过运用各种相关的数据来帮助非专业人士理解问题。

学习率技术

在使用不同优化器(例如随机梯度下降,Adam)神经网络相关训练中,学习速率作为一个超参数控制了权重更新的幅度,以及训练的速度和精度。学习速率太大容易导致目标(代价)函数波动较大从而难以找到最优,而弱学习速率设置太小,则会导致收敛过慢耗时太长

超参数技术

在机器学习中,超参数是在学习过程开始之前设置其值的参数。 相反,其他参数的值是通过训练得出的。 不同的模型训练算法需要不同的超参数,一些简单的算法(如普通最小二乘回归)不需要。 给定这些超参数,训练算法从数据中学习参数。相同种类的机器学习模型可能需要不同的超参数来适应不同的数据模式,并且必须对其进行调整以便模型能够最优地解决机器学习问题。 在实际应用中一般需要对超参数进行优化,以找到一个超参数元组(tuple),由这些超参数元组形成一个最优化模型,该模型可以将在给定的独立数据上预定义的损失函数最小化。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

特征工程技术

特征工程是利用数据所在领域的相关知识来构建特征,使得机器学习算法发挥其最佳的过程。它是机器学习中的一个基本应用,实现难度大且代价高。采用自动特征工程方法可以省去采用人工特征工程的需求。Andrew Ng 说“挖掘特征是困难、费时且需要专业知识的事,应用机器学习其实基本上是在做特征工程。”

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

随机梯度下降技术

梯度下降(Gradient Descent)是遵循成本函数的梯度来最小化一个函数的过程。这个过程涉及到对成本形式以及其衍生形式的认知,使得我们可以从已知的给定点朝既定方向移动。比如向下朝最小值移动。 在机器学习中,我们可以利用随机梯度下降的方法来最小化训练模型中的误差,即每次迭代时完成一次评估和更新。 这种优化算法的工作原理是模型每看到一个训练实例,就对其作出预测,并重复迭代该过程到一定的次数。这个流程可以用于找出能导致训练数据最小误差的模型的系数。

过拟合技术

过拟合是指为了得到一致假设而使假设变得过度严格。避免过拟合是分类器设计中的一个核心任务。通常采用增大数据量和测试样本集的方法对分类器性能进行评价。

正则化技术

当模型的复杂度增大时,训练误差会逐渐减小并趋向于0;而测试误差会先减小,达到最小值后又增大。当选择的模型复杂度过大时,过拟合现象就会发生。这样,在学习时就要防止过拟合。进行最优模型的选择,即选择复杂度适当的模型,以达到使测试误差最小的学习目的。

交叉验证技术

交叉验证,有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法。于是可以先在一个子集上做分析, 而其它子集则用来做后续对此分析的确认及验证。 一开始的子集被称为训练集。而其它的子集则被称为验证集或测试集。交叉验证的目标是定义一个数据集到“测试”的模型在训练阶段,以便减少像过拟合的问题,得到该模型将如何衍生到一个独立的数据集的提示。

推荐文章
暂无评论
暂无评论~