GraphGym 是开始学习标准化 GNN 实现和评估的最佳平台;
GraphGym 提供了一个简单的接口来并行尝试数千个 GNN 架构,以找到适合特定任务的最佳设计;
GraphGym 可轻松进行超参数搜索并可视化哪些设计选择更好。

Auto Byte
专注未来出行及智能汽车科技
微信扫一扫获取更多资讯
Science AI
关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展
微信扫一扫获取更多资讯
当前最流行和广泛使用的 GNN 库 PyG(PyTorch Geometric)现在出 2.0 版本了,新版本提供了全面的异构图支持、GraphGam 以及很多其他特性,这一系列改进,为使用者带来了更好的用户体验。
GraphGym 是开始学习标准化 GNN 实现和评估的最佳平台;
GraphGym 提供了一个简单的接口来并行尝试数千个 GNN 架构,以找到适合特定任务的最佳设计;
GraphGym 可轻松进行超参数搜索并可视化哪些设计选择更好。
机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。
在机器学习中,超参数是在学习过程开始之前设置其值的参数。 相反,其他参数的值是通过训练得出的。 不同的模型训练算法需要不同的超参数,一些简单的算法(如普通最小二乘回归)不需要。 给定这些超参数,训练算法从数据中学习参数。相同种类的机器学习模型可能需要不同的超参数来适应不同的数据模式,并且必须对其进行调整以便模型能够最优地解决机器学习问题。 在实际应用中一般需要对超参数进行优化,以找到一个超参数元组(tuple),由这些超参数元组形成一个最优化模型,该模型可以将在给定的独立数据上预定义的损失函数最小化。
图网络即可以在社交网络或其它基于图形数据上运行的一般深度学习架构,它是一种基于图结构的广义神经网络。图网络一般是将底层图形作为计算图,并通过在整张图上传递、转换和聚合节点特征信息,从而学习神经网络基元以生成单节点嵌入向量。生成的节点嵌入向量可作为任何可微预测层的输入,并用于节点分类或预测节点之间的连接,完整的模型可以通过端到端的方式训练。