Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

魔王报道

堪比当年的LSTM,Transformer引燃机器学习圈:它是万能的

谷歌研究科学家 David Ha:Transformer 是新的 LSTM。

2017 年 6 月谷歌发布论文《Attention is All You Need》时,我们或许都没有意识到它提出的 Transformer 架构将带来多少惊喜。

在诞生至今不足四年的时间里,Transformer 不仅成为自然语言处理领域的主流模型(基于 Transformer 的预训练语言模型成为主流),还开始了向其他领域的跨界,近几个月来出现了大量将 Transformer 应用于计算机视觉领域的研究。

2020 年 10 月,谷歌提出了 Vision Transformer (ViT),可以直接利用 transformer 对图像进行分类,而不需要卷积网络。ViT 模型取得了与当前最优卷积网络相媲美的结果,但其训练所需的计算资源大大减少。

2020 年 12 月,复旦、牛津、腾讯等机构的研究者提出了 SEgmentation TRansformer(SETR),将语义分割视为序列到序列的预测任务,该模型在 ADE20K 上排名第一,性能优于 OCNet、GCNet 等网络。

2021 年 1 月初,OpenAI 又连放大招 ,用 DALL·E 和 CLIP 打破了自然语言与视觉的次元壁。两个模型都利用 Transformer 达到了很好的效果,前者可以基于本文直接生成图像,后者则能完成图像与文本类别的匹配。

由此,「Transformer 是万能的吗?」成为了近期机器学习社区的热门话题。谷歌大脑研究员 David Ha 发推表示:Transformer 是新的 LSTM。

他否定了自己在 2017 年 5 月发表的言论:「LSTM 就像神经网络中的 AK47。不管我们多么努力地想用新事物取代它,都是白费力气。从现在起它还将应用 50 年。」LSTM 由 Sepp Hochreiter 和 Jürgen Schmidhuber 于 1997 年联合提出,当时已诞生 20 年。

David Ha 不会想到,这句预言被一个月后出现的 Transformer 打破,而这仅用了 4 年时间。

著名机器学习资源网站 Papers with Code 在 1 月 20 日发布的 Newsletter 中列举了近期应用 Transformer 的十大新任务

图像合成
  • 论文:Taming Transformers for High-Resolution Image Synthesis

  • 链接:https://arxiv.org/pdf/2012.09841v1.pdf

多目标追踪
  • 论文:TransTrack: Multiple-Object Tracking with Transformer

  • 链接:https://arxiv.org/pdf/2012.15460v1.pdf

音乐生成
  • 论文:Compound Word Transformer: Learning to Compose Full-Song Music over Dynamic Directed Hypergraphs

  • 链接:https://arxiv.org/pdf/2101.02402v1.pdf

舞蹈生成
  • 论文:Dance Revolution: Long-Term Dance Generation with Music via Curriculum Learning

  • 链接:https://arxiv.org/pdf/2006.06119v5.pdf

3D 目标检测
  • 论文:Self-Attention Based Context-Aware 3D Object Detection

  • 链接:https://arxiv.org/pdf/2101.02672v1.pdf

点云处理
  • 论文:PCT: Point Cloud Transformer

  • 链接:https://arxiv.org/pdf/2012.09688v1.pdf

时序预测
  • 论文:Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting

  • 链接:https://arxiv.org/pdf/1912.09363v3.pdf

视觉 - 语言建模
  • 论文:VinVL: Making Visual Representations Matter in Vision-Language Models

  • 链接:https://arxiv.org/pdf/2101.00529v1.pdf

车道形状预测
  • 论文:End-to-end Lane Shape Prediction with Transformers

  • 链接:https://arxiv.org/pdf/2011.04233v2.pdf

端到端目标检测
  • 论文:Deformable DETR: Deformable Transformers for End-to-End Object Detection

  • 链接:https://arxiv.org/pdf/2010.04159v2.pdf

而除了 David Ha 以外,另一位研究者英伟达研究科学家、前 OpenAI 研究科学家 Ankur Handa 也表示「Transformers are all you need」:

... is All You Need?

Transformer 引领了不止一种潮流。

在其论文《Attention is All You Need》发表后,各种「** is All You Need」论文纷纷出现。就连 LSTM 提出者 Sepp Hochreiter 也写过一篇《Hopfield Networks is All You Need》。有趣的是,这篇论文正是对 Transformer 核心注意力机制新颖性的驳斥:Transformer 中的注意力机制等价于 Hopfield 网络中的更新规则。

Transformer 的强大主要归功于其中的注意力机制注意力机制在 NLP 领域的应用最早可以追溯到 2014 年 Bengio 团队将其引入神经机器翻译任务,但那时模型的核心架构还是 RNN。相比之下,Transformer 完全抛弃了传统的 CNN 和 RNN,整个网络结构完全由注意力机制组成,这种改变所带来的效果提升也是颠覆性的。

然而,Sepp Hochreiter 等人在 2020 年 7 月发表的论文《Hopfield Networks is All You Need》中表示,Transformer 中的注意力机制其实等价于扩展到连续状态的 modern Hopfield 网络中的更新规则。

Sepp 这篇论文发表时,Transformer 的跨界之旅已经开始。2020 年 5 月,Facebook AI 推出了 首个将 Transformer 成功整合为检测 pipeline 中心构建块的目标检测框架——Detection Transformer(DETR),用于目标检测和全景分割。6 月,OpenAI 将基于 Transformer 的模型 GPT-2 应用到图像领域,用于图像分类任务。

半年过去,越来越多的工作开始探索如何将 Transformer 应用于计算机视觉等其他领域,最近更是出现了「Transformers are all you need」、「Transformers are the new LSTMs」的说法。

Transformer 是新的 LSTM 吗?

1997 年,Sepp Hochreiter 与 Jürgen Schmidhuber 联合发表了长短期记忆网络(LSTM)论文,被认为是机器学习发展史上的一座里程碑。

LSTM 是一种特殊的循环神经网络(RNN)。Sepp Hochreiter 在 1991 年分析了随时间反向传播(BPTT)带来的梯度爆炸和梯度消失问题;1997 年,Sepp Hochreiter 与 Jürgen Schmidhuber 在 LSTM 论文中引入 CEC 单元解决 BPTT 带来的梯度爆炸和消失问题。之后又有许多研究者对其进行了改进和普及。

LSTM 单元的基本结构(图源:https://en.wikipedia.org/wiki/Long_short-term_memory)

2020 年 2 月,LSTM 提出者 Jürgen Schmidhuber 撰文综述了 LSTM 的十年发展史,介绍了它在机器翻译、语音识别、机器人学、时序预测、聊天机器人等多个领域的应用。

而 Transformer 诞生伊始就完全舍弃了 RNN,在 LSTM 占优势的 NLP 领域逐渐站稳脚跟。现在,许多研究又将它应用于时序预测、音乐生成、图像分类等跨界任务中。在 Papers with Code 最近发布的 Transformer 应用十大新任务中,过去都有着 LSTM 的活跃身影。

Transformer 是新的 LSTM 吗?从模型应用领域的多样性来看,这似乎已见雏形。

不知道如果现在发表「Transformer 无法被替代,还可以再用 50 年」的预言,多久之后会被打破。😊

参考链接:
https://paperswithcode.com/newsletter/3
https://twitter.com/hardmaru
理论TransformerLSTM计算机视觉领域
1
相关数据
机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

注意力机制技术

我们可以粗略地把神经注意机制类比成一个可以专注于输入内容的某一子集(或特征)的神经网络. 注意力机制最早是由 DeepMind 为图像分类提出的,这让「神经网络在执行预测任务时可以更多关注输入中的相关部分,更少关注不相关的部分」。当解码器生成一个用于构成目标句子的词时,源句子中仅有少部分是相关的;因此,可以应用一个基于内容的注意力机制来根据源句子动态地生成一个(加权的)语境向量(context vector), 然后网络会根据这个语境向量而不是某个固定长度的向量来预测词。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

机器翻译技术

机器翻译(MT)是利用机器的力量「自动将一种自然语言(源语言)的文本翻译成另一种语言(目标语言)」。机器翻译方法通常可分成三大类:基于规则的机器翻译(RBMT)、统计机器翻译(SMT)和神经机器翻译(NMT)。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

语义分割技术

语义分割,简单来说就是给定一张图片,对图片中的每一个像素点进行分类。图像语义分割是AI领域中一个重要的分支,是机器视觉技术中关于图像理解的重要一环。

序列到序列技术

长短期记忆网络技术

长短期记忆(Long Short-Term Memory) 是具有长期记忆能力的一种时间递归神经网络(Recurrent Neural Network)。 其网络结构含有一个或多个具有可遗忘和记忆功能的单元组成。它在1997年被提出用于解决传统RNN(Recurrent Neural Network) 的随时间反向传播中权重消失的问题(vanishing gradient problem over backpropagation-through-time),重要组成部分包括Forget Gate, Input Gate, 和 Output Gate, 分别负责决定当前输入是否被采纳,是否被长期记忆以及决定在记忆中的输入是否在当前被输出。Gated Recurrent Unit 是 LSTM 众多版本中典型的一个。因为它具有记忆性的功能,LSTM经常被用在具有时间序列特性的数据和场景中。

语言模型技术

语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。由于字词与句子都是任意组合的长度,因此在训练过的语言模型中会出现未曾出现的字串(资料稀疏的问题),也使得在语料库中估算字串的机率变得很困难,这也是要使用近似的平滑n元语法(N-gram)模型之原因。

GPT-2技术

GPT-2是OpenAI于2019年2月发布的基于 transformer 的大型语言模型,包含 15 亿参数、在一个 800 万网页数据集上训练而成。据介绍,该模型是对 GPT 模型的直接扩展,在超出 10 倍的数据量上进行训练,参数量也多出了 10 倍。在性能方面,该模型能够生产连贯的文本段落,在许多语言建模基准上取得了 SOTA 表现。而且该模型在没有任务特定训练的情况下,能够做到初步的阅读理解、机器翻译、问答和自动摘要。

目标检测技术

一般目标检测(generic object detection)的目标是根据大量预定义的类别在自然图像中确定目标实例的位置,这是计算机视觉领域最基本和最有挑战性的问题之一。近些年兴起的深度学习技术是一种可从数据中直接学习特征表示的强大方法,并已经为一般目标检测领域带来了显著的突破性进展。

时序预测技术

时序预测(时间序列预测)是预测时间序列未来值(以及不确定性的边界)的任务。

推荐文章
暂无评论
暂无评论~