机器之心编辑部发布

Github Star 7.2K,超级好用的OCR数据合成与半自动标注工具,强烈推荐!

OCR 方向的工程师,一定需要知道这个 OCR 开源项目:PaddleOCR。短短几个月,累计 Star 数量已超过 7.2K,频频登上 Github Trending 日榜月榜,称它为 OCR 方向目前最火的 repo 绝对不为过。

12 月,它又带来四大新发布与升级,核心内容先睹为快:

  • 全新发布数据合成工具 Style-Text:可以批量合成大量与目标场景类似的图像,在多个场景验证,效果均提升 15% 以上。

  • 全新发布半自动数据标注工具 PPOCRLabel:有了它数据标注工作事半功倍,相比 labelimg 标注效率提升 60% 以上,社区小规模测试,好评如潮。

  • 语言识别模型效果升级:中文、英文、韩语、法语、德语、日文识别效果均优于 EasyOCR。

  • PP-OCR 开发体验再升级:支持动态图开发(训练调试更方便),静态图部署(预测效率更高),鱼与熊掌可以兼得。


PaddleOCR 历史表现回顾

先看下 PaddleOCR 自今年开源以来,短短几个月在 GitHub 上的表现:

  • 6 月,8.6M 超轻量模型发布,GitHub Trending 全球趋势榜日榜第一。

  • 8 月,开源 CVPR2020 顶会 SOTA 算法,再上 GitHub 趋势榜单!

  • 10 月,发布 PP-OCR 算法,开源 3.5M 超超轻量模型,再下 Paperswithcode 趋势榜第一



这个含金量,广大的 GitHub 开发者们自然懂,3.5M 超超轻量模型的效果图大家直接看,绝对杠杠的。


火车票、表格、金属铭牌、翻转图片、外语都是妥妥的,3.5M 的模型能达到这个识别精度,绝对是良心之作了!

传送门:https://github.com/PaddlePaddle/PaddleOCR

那么最近的 12 月份更新,又给大家带来哪些惊喜呢?

全新发布 OCR 数据合成工具:Style-Text

相比于传统的数据合成算法,Style-Text 可以实现特殊背景下的图片风格迁移,只需要少许目标场景图像,就可以合成大量数据,效果展示如下:

1、相同背景批量数据合成


2、相同文字批量数据合成


3、图片分离前景背景


除了拉风的效果,采用这样的合成数据和真实数据一起训练,可以显著提升特殊场景的性能指标,分别以两个场景为例:


怎么样,绝对是黑科技了吧。这项能力核心算法是基于百度自研的文本编辑算法《Editing Text in the Wild》。

论文地址:https://arxiv.org/abs/1908.03047

不同于常用的基于 GAN 的数据合成工具,Style-Text 主要框架包括 ①文本前景风格迁移模块 ②背景抽取模块 ③融合模块。经过这样三步,就可以迅速实现图片文字风格迁移啦。


超强 OCR 数据标注工具:PPOCRLabel

除了数据合成,数据标注也一直是深度学习开发者关注的重点,无论是从成本还是时间上面,提高标注效率,降低标注成本太重要了。PPOCRLabel 通过内置高质量的 PPOCR 中英文超轻量预训练模型,可以实现 OCR 数据的高效标注。CPU 机器运行也是完全没问题的。话不多说,直接看 PPOCRLabel 效果演示:


用法也是非常的简单,标注效率提升 60%-80% 是妥妥的。只能说,真的太香了。


最好的多语言模型效果

简单对比一下目前主流 OCR 方向开源 repo 的核心能力:

中英文模型性能及功能对比


其中,多语言识别模型准确率对比(仅 EasyOCR 提供)


测试数据及环境说明:

  • 中英文场景:针对 OCR 实际应用场景,包括合同,车牌,铭牌,火车票,化验单,表格,证书,街景文字,名片,数码显示屏等,收集的 300 张图像,每张图平均有 17 个文本框,PaddleOCR 的 F1-Score 超过 0.5,这个性能已经很不错了。

  • 多语言场景:PaddleOCR 选择了开源数据 ICDAR2017 – MLT(多语言文本识别测试集),并抽取其中的法语、德语、日语、韩语数据作为评测集合。其中测试图片大多来自于自然场景,例如广告牌、路标、海报等。


PP-OCR 开发体验再升级

动态图和静态图是深度学习框架常用的两种模式。在动态图模式下,代码编写运行方式符合 Python 程序员的习惯,易于调试,但在性能方面, Python 执行开销较大,与 C++ 有一定差距。

相比动态图,静态图在部署方面更具有性能的优势。静态图程序在编译执行时,预先搭建好的神经网络可以脱离 Python 依赖,在 C++ 端被重新解析执行,而且拥有整体网络结构也能进行一些网络结构的优化。

飞桨动态图中新增了动态图转静态图的功能,支持用户使用动态图编写组网代码。预测部署时,飞桨会对用户代码进行分析,自动转换为静态图网络结构,兼顾了动态图易用性和静态图部署性能两方面优势。


良心出品的中英文文档教程


别的不需要多说了,大家访问 GitHub 点过 star 之后自己体验吧:
https://github.com/PaddlePaddle/PaddleOCR


微信扫描二维码添加运营同学,并回复【OCR】,运营同学会邀请您加入官方交流群,获得更高效的问题答疑。


如果您加入官方 QQ 群,您将遇上大批志同道合的深度学习同学。
官方 QQ 群:1108045677。

如果您想详细了解更多飞桨的相关内容,请参阅以下文档。
官网地址:https://www.paddlepaddle.org.cn
PaddleOCR 项目地址:
GitHub: https://github.com/PaddlePaddle/PaddleOCR
Gitee: https://gitee.com/paddlepaddle/PaddleOCR
产业百度OCR
1
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

语言识别技术

在自然语言处理中,语言识别或语言猜测是确定给定内容所使用的自然语言的问题。针对该问题的计算方法被视为文本分类的特例,并用各种统计方法解决。

语言模型技术

语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。由于字词与句子都是任意组合的长度,因此在训练过的语言模型中会出现未曾出现的字串(资料稀疏的问题),也使得在语料库中估算字串的机率变得很困难,这也是要使用近似的平滑n元语法(N-gram)模型之原因。

百度机构

百度是全球领先的人工智能平台型公司。百度大脑是中国领先的“软硬一体AI大生产平台”,是百度AI的集大成,对外全方位输出超过270多项核心AI能力,服务230万开发者。飞桨是中国首个全面开源开放、功能完备的产业级深度学习平台,是中国自主研发的“智能时代的操作系统”。百度智能云是百度AI To B 业务的重要承载者和输出者,是产业智能化领导者。小度助手是中国领先的对话式人工智能操作系统,拥有中国市场最繁荣、开放的对话式人工智能生态,今年6月,小度助手语音交互次数超过58亿次。作为全球领先的、最活跃的自动驾驶开放平台,百度Apollo代表中国最强自动驾驶实力,被知名研究公司Navigant Research列为全球四大自动驾驶领域领导者之一。目前聚焦在以自动驾驶、汽车智能化、智能交通为核心的三大赛道。自动驾驶技术方面,超过十项中国第一,实力领跑行业。智能交通方面,百度 “ACE交通引擎”是全球首个车路行融合的全栈式智能交通解决方案。

https://www.baidu.com/
推荐文章
暂无评论
暂无评论~