陈萍、小舟报道

吴恩达演讲直指AI落地三大挑战,并提出解决方案

吴恩达在斯坦福大学 HAI 研讨会上进行内容分享,指出 AI 部署所面临的三大挑战,并给出解决方案。

随着人工智能的不断发展,大量先进算法以及配套硬件设施不断涌现,研究人员凭借新算法等不断刷新 SOTA 记录,但是在科研中、论文中实现的高精度性能,很多却不能应用于实际的生产中。AI 离真正的落地还有多远?

现阶段,许多公司和研究团队正在努力将研究转化为实际的生产部署。近日,机器学习大牛吴恩达在斯坦福大学 HAI 研讨会上分享了一些有趣的观点,即「如何弥补 AI 的概念验证与生产之间的差距」。

HAI(「以人为本」人工智能研究院)成立于 2019 年 3 月,由斯坦福大学人工智能科学家李飞飞和哲学教授约翰 · 埃切曼迪(John Etchemendy)共同领导,致力于推动人工智能领域的跨学科合作,让科技以人为中心,并加强对人工智能社会影响的研究。HAI 定期举办研讨会,此前吴恩达参加研讨会并做了演讲。


AI 部署所面临的挑战

在这次研讨会上,吴恩达分享了人工智能面临的挑战之一,即 AI 概念验证与产品落地之间的差距。

吴恩达从三个方面介绍了 AI 部署所面临的挑战:小数据、算法的鲁棒性和泛化能力,以及变更管理。


挑战 1:小数据问题

小数据在消费互联网以外的工业应用中很常见,而 AI 研究通常使用大数据,很多算法是针对大数据开发的。

但是很多行业可获取的数据规模有限,为了使 AI 在这些行业中起作用,我们必须开发针对小数据的算法。小数据适用的算法包括 GAN、GPT-3、自监督、迁移学习等。


挑战 2:算法的鲁棒性和泛化能力

大家可能已经发现,已发表论文中效果显著的模型通常在生产中不起作用,研究中声称算法结果已经超过人类的方法却不能很好地投入到生产,训练的模型不能很好地泛化到其他数据集等。吴恩达以医疗领域举例进行说明。然而这些问题不仅存在于医疗领域,其他领域也面临相同的问题。


挑战 3:变更管理

AI 技术可以使工作流程实现自动化或部分自动化,而这对相关人员的工作带来了影响。我们需要对整体的改变有更好地掌握。


解决方案

对于上述挑战,吴恩达也表达了自己的观点,给出了解决方案。他指出我们应该关心整个机器学习项目周期,除了构建机器学习模型以外,其他问题也应该更系统化,让 AI 更具可重复性和系统性:


我们应从范围界定到数据、建模和部署,系统地规划机器学习项目的整个周期。


吴恩达表示,学界和工业界应努力将机器学习转换成系统化的工程学科。


吴恩达演讲完整视频:
产业人工智能吴恩达
相关数据
吴恩达人物

斯坦福大学教授,人工智能著名学者,机器学习教育者。2011年,吴恩达在谷歌创建了谷歌大脑项目,以通过分布式集群计算机开发超大规模的人工神经网络。2014年5月16日,吴恩达加入百度,负责“百度大脑”计划,并担任百度公司首席科学家。2017年3月20日,吴恩达宣布从百度辞职。2017年12月,吴恩达宣布成立人工智能公司Landing.ai,并担任公司的首席执行官。2018年1月,吴恩达成立了投资机构AI Fund。

所属机构
机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

推荐文章
暂无评论
暂无评论~