赵泓维 作者

《Nature》子刊收录宣武医院头颈CTA血管重建最新成果,AI重塑临床流程

近日,《Nature 》子刊《Nature Communications》在线刊发了题为《Rapid vessel segmentation and reconstruction of head and neck CTA using 3D convolutional neural network》的科研论文(IF=12.121)。该论文由首都医科大学宣武医院卢洁教授团队与数坤(北京)网络科技有限公司共同研究发布。论文第一作者为傅璠博士、通讯作者为卢洁教授。

该研究首次利用3D卷积神经网络设计了一个可实现头颈CTA血管分割的后处理系统,能够自动除去骨影像,并完成头颈CTA血管重建。通过这样的途径,该系统一定程度上重塑了头颈CTA临床路径。

通常而言,头颈CTA检查需要患者进行两次CT扫描,但在该模型的辅助之下,只需一次增强扫描,患者便能获得可用于重建的影像结果。同时,在长达两年的研究周期中,AI重建的精度与准确度也随着训练的推进而不断趋近于完美,逐渐能与资深医师相当。

作为发病率高、死亡率高、复发率高、医疗负担高的全球性疾病,卒中等脑血管病患者达千万级别。 对头颈CTA临床路径进行创新性突破,及其背后的临床价值是该研究成果被《Nature》子刊收录的重要原因之一。 

此外,该论文的研究过程也体现了人工智能不断成长提高的过程——练就一个有效的模型并非一蹴而就,这是一个循序渐进的过程。 

千万级患者量的临床需求 

最新全球疾病负担研究(Global Burden of Disease Study,GBD)显示,我国总体卒中终生发病风险为39.9% ,位居全球首位,这意味着中国人一生中每5个人约有2个人会罹患卒中。此外,卒中也是我国疾病所致寿命损失年的第一位病因。《2019中国卫生健康统计提要》数据显示,2018年我国居民因脑血管病致死比例超过20%,这意味着每5位死亡者中至少有1人死于卒中。

全球而言,2019年3月11日,《Lancet Neurology》杂志发布的相关数据,2016年,仅卒中患病人数就为8010万,是全球第二大死亡原因。

缺血性卒中以及多种脑血管疾病诊疗中,头颈CTA检查是常规检查手段。然而,日益增加的检查量与有限CTA医师之间的矛盾,使得医院对于患者的需求应接不暇。科室工作压力逐渐增大,患者也许等待较长时间才能完成CTA检查预约及报告获取。 

基于卷积神经网络深度学习算法或能解决这一矛盾,自人工智能的洪流席卷医疗领域以来,许多医疗科技企业、医院学者纷纷尝试用AI的方式重塑CTA检查流程。提高CTA 检查效率、提高诊断准确率,其可能带来亿万患者的获益——这正是卢洁教授团队选择头颈CTA作为研究对象的重要因素之一,亦是全球医疗发展向善的趋势。

量变到质变,AI优化临床路径

经过多年发展,人工智能介入冠脉CTA的能力已经在实践之中得到验证,大量三甲医院已经上线了数坤科技等AI企业研发的“AI+CTA”产品。但相比于冠脉CTA,头颈CTA的重建过程显得更为复杂,其中的难度提升来源于CT影像之中头颈血管解剖复杂以及骨显像带来的干扰。 

“由于拍摄头颈CT时无法忽略颅骨部分,而颅骨密度高,在CT图像上会以与造影剂类似的高亮方式呈现,数值也非常接近。因此,医生必须使用一些特殊的方法将血管与颅骨区分出来。”数坤科技临床研究院负责人郭宁解释到。 

具体而言,为消除颅骨显像对于重建的影响,医生往往会要求患者进行两次CT扫描,第一次不注射造影剂,第二次注射造影剂。在第一次CT扫描之中,能够显像的只有拥有高密度的颅骨部分,而第二次显像则能同时包含颅骨与血管。在进行两次扫描之后,对其结果进行图像减影,减去两次影像中均为高亮显示的颅骨及其它部分,剩下的便是重建需要的血管影像。

实际之中,这样的操作常常会遇到很多问题。首先,这种方式对于患者的配合度要求非常高,患者两次扫描的位置必须匹配,也不能移动,否则减影效果会有所欠缺。其次,两次CT检查无疑会给予患者更多的辐射剂量,虽然剂量仍然在安全范围之内,但容易引起患者的担忧。 

AI介入后,头颈CTA的检查流程由此发生了较大的改变。将减少一次CT扫描,为患者带来更好的就医体验,而重建影像耗费的时间也将由此大幅降低。 

超亿次血管勾画验证,AI实现颅内细小血管精准分割

回到论文,整个实验大致可分为模型训练与模型验证两个部分。18259例头颈CTA数据集均采集于2017年6月至2018年11月间,由5家国内顶尖三甲医院协作提供。按照每个病例600幅影像,每张影像10个血管区域进行计算,整个实验过程已对超过一亿血管区域进行了AI勾画与分割。 

为保证样本数据的有效性,研究人员手动检查排除了507项图像质量较差的样本数据,剩下9370例男性数据与8889例女性数据,所有参与者年龄均位于63±12岁这一区间。

 研究设计

完成样本构建后,研究人员使用数坤科技开发的CerebralDoc AI模型对影像进行后处理重建。

一般的深度神经网络,在精度要求非常高的医疗图像中完成高标准的分割,难度比较大。比如,头颈血管特别是颅内血管由于比较细小在一副图像中只占几十甚至几个像素,在数坤之前,国内外都没有更好的网络能够大规模应用于临床。

数坤的CerebralDoc模型充分考虑了CT影像的三维特性和人体的组织器官特征,将待学习的组织目标(比如血管)的各类特征进行放大,在训练时能够充分将所需的特点进行学习提取。数坤专门设计的训练过程,能做到训练时从整体和局部分别观察血管,不断增强网络的鲁棒性,这是很独特的。 

相比较数坤自己研发的前几代网络,新的神经网络在对颅内细小血管的追踪以及排除骨、去除静脉干扰上又有突破。

数坤科技研究院负责人郭宁告诉动脉网:“这个实验进行至今已经超过2年。模型最初建立的时候,像一个刚刚出生的孩子,随着网络的快速成长,影像重建的准确率、效率,逐渐提升,到了论文发布时,AI的重建准确率已经趋近于100%。” 

效率质量不断提升,医生+AI 优势互补

论文发布时,该AI的算法评价指标戴斯相关系数、血管加权分数和召回率均达到90%以上。 

具体而言,AI 在独立测试集重建准确率达到了93.1%。而与152例手动重建数据进行对比,AI重建的合格率达到92.1%,此外,AI 重建VR图像的血管边界比手动重建更光滑、最大密度投影重建(MIP)图像的去骨效果更佳。

a右脑中动脉闭塞,没有建立侧支循环;b基底动脉瘤伴血栓和钙化,可在CerebralDoc重建的MIP中观察到;c寰枕手术后,AI中的金属伪影得到了更好的抑制;d直接由主动脉引起的右颈总动脉和左椎动脉的分叉严重狭窄

AI重建和手动重建图像质量的比较。第一行可见AI 重建图像血管管壁更加光滑,分支显示更远;第二行可见手动去骨受扫描的影响较大

在效率提升上,AI同样发挥出优异的表现。该系统应用于宣武医院后,该院影像平均后处理时间由14.22±3.64min减至4.94±0.36min,时间缩短到原来的1/3。同时,技师的点击操作次数也因为AI的介入而飞速下降,由115.87±25.9下减至4下。

此外,使用5个月之后,宣武医院进行CTA后处理技师已经从3人缩减至1人。郭宁表示:“技师人数的变化反映了AI能力的成长,在实验之初,AI处理的结果仍需要医生进行修补确认,但随着模型逐渐成熟,医生已经能够将大部分工作交给AI进行,转而投身更有意义的分析与研究工作之中。这个时候,AI技术已经与医生的工作深入的融合在了一起。” 

无远弗届

长期以来,我们一直无法通过定量的方式衡量AI为医生带来的价值,而本篇论文的研究方法无疑提供了一条合理的路径。 

实验已经有效验证了AI在头颈CTA影像后处理中的优效性,研究团队仍在持续寻求提升空间。 

郭宁告诉动脉网:“ 本次实验排除了一些存在伪影,或者存在先天血管畸变的病例,这将是我们下一阶段研究的重点目标。”

这放在整个人工智能领域同样适用。AI 经过了多年的发展,应用范围和应用深度上需医生和科学家团队不断向深度探索,接下来,我们还需要更多这样产学结合的成果,用实际结果证实AI的优效性。

动脉网
动脉网

专注医疗产业服务平台

产业Nature
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

卷积神经网络技术

卷积神经网路(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网路由一个或多个卷积层和顶端的全连通层(对应经典的神经网路)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网路能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网路在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网路,卷积神经网路需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。 卷积网络是一种专门用于处理具有已知的、网格状拓扑的数据的神经网络。例如时间序列数据,它可以被认为是以一定时间间隔采样的一维网格,又如图像数据,其可以被认为是二维像素网格。

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

深度神经网络技术

深度神经网络(DNN)是深度学习的一种框架,它是一种具备至少一个隐层的神经网络。与浅层神经网络类似,深度神经网络也能够为复杂非线性系统提供建模,但多出的层次为模型提供了更高的抽象层次,因而提高了模型的能力。

推荐文章
暂无评论
暂无评论~