近日,计算机视觉顶会 ECCV 2020 已正式公布论文接收结果。本文介绍的是来自爱奇艺团队一篇论文,研究者提出了 Boundary Content Graph Neural Network (BC-GNN),通过图神经网络对边界和内容预测之间的关系进行建模,生成更精确的时序边界和可靠的内容置信度分数。

Auto Byte
专注未来出行及智能汽车科技
微信扫一扫获取更多资讯
Science AI
关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展
微信扫一扫获取更多资讯
近日,计算机视觉顶会 ECCV 2020 已正式公布论文接收结果。本文介绍的是来自爱奇艺团队一篇论文,研究者提出了 Boundary Content Graph Neural Network (BC-GNN),通过图神经网络对边界和内容预测之间的关系进行建模,生成更精确的时序边界和可靠的内容置信度分数。
在 计算网络中, 一个节点的激活函数定义了该节点在给定的输入或输入的集合下的输出。标准的计算机芯片电路可以看作是根据输入得到"开"(1)或"关"(0)输出的数字网络激活函数。这与神经网络中的线性感知机的行为类似。 一种函数(例如 ReLU 或 S 型函数),用于对上一层的所有输入求加权和,然后生成一个输出值(通常为非线性值),并将其传递给下一层。
线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。