IBM Watson Build 创新中心 “用技术改变世界 Call For Code 全球挑战赛”同样竞争激烈,参赛者的视野也从聚焦具体产业,上升到地球环境。
随着全球人口的不断增长, 地球所承担的资源压力也越来越重。研究显示,到 2100 年左右,全球气温可能会升高 3-5 摄氏度。大量研究证实,气候在不断变化,海平面迅速上升,极端天气事件在世界范围内不断上演。
与此同时,人们与混沌系统、蝴蝶效应的较量能力也在进化。比如,借助机器学习算法,人们越来越善于预测百公里厚、并且一直在移动的大气层运动,并根据最新数据不断调校模型算法。最明显的例子,就是人们对飓风马修的运动轨迹越来越了解。现在,提前5天的预测,就像十年前提前24小时预测一样准确。
因此,IBM Watson Build 创新中心以「应对气候变化」为主题,设置了「水资源可持续性」、「能源可持续性」、「抗灾能力」三大方向。从获奖情况来看,大家仍然遵循着既有的两大思路来设计自身方案:利用“对话”API搭建对话机器人,从事沟通与协调;或者,注重“发现”,让人工智能加速从海量非结构数据中提取信息。
冠军团队名叫“喵喵喵”,阵容强大,成员包括字节跳动设计师、北航博士研究生、海归程序员和Airbnb工程师。他们利用机器学习技术结合卫星数据来预测厄尔尼诺现象,通过观察海平面高度的异常情况并使用ConvLSTM2D 神经网络加以识别和预测来更好的帮助人类抵抗自然灾害。
这一解决方案不仅让人想起几年前,IBM收购了 Weather Company。作为一家能够从 4000 万手机中收集超过每秒 4GB 信息量, 以及147000 个天气监测站,50000 个航班,和数不清的能够反馈天气数据的智能汽车作为信息收集源的公司。它掌握的天气数据就是对未来天气进行预测分析的最好素材。
天气数据几乎影响着各行各业,IBM 可以向各个产业出售天气数据和业务解决方案,而Watson则是这一构想的核心所在:
如果能预测很多事情,能够预测地更准确,我们就能采取行动。即便是今天,我们能够提前3,到4周预测天气,我们可以理解严寒天气延长意味着什么,天气转暖和干旱又意味着什么,所有这些,都有助于水资源、农业生产甚至更多行业的生产和生活。
第二名花落“大气科学小分队”。他们试图构建一个气候影响评级(CIR)系统,该CIR系统的核心功能为扫描产品barcode(和食品标签类似),能够实时在数据库中调用产品评级数据,通过预设算法给出产品气候评级结果,让消费者意识到制造过程中的能源成本和由此产生的二氧化碳(以及诸如水之类的其他消耗品)。
本团队在此次比赛中完成了基础框架的建立和实现,并对系统完善升级提出了拓展框架的构想。基础框架部分包括CIR评级标签设计,评级指标的算法建立,通过API服务器、cloudant等服务调用和存储数据,评级结果可视化的实现。拓展框架部分除了核心算法外,还包括制造商和销售商上载数据平台的搭建,政府部门基于CIR评级结果的补贴政策的制定等。
如果说前两名获奖团队侧重 Watson “发现”技能,那么,第三名获奖者将重心放在 “对话”。这也是非常常见的构建思路,以往IBM Watson 挑战赛中也经常看到这类方案,比如虚拟旅行助理、导医机器人等。
第三名是章明为代表的“We Help”团队,打造了语音无线警告系统。他们公司本来就是做音视频交互协议,因此,他们想要结合IBM的人工智能技术,去扩大它的语音应用场景。
比如,当前端设备监听到关键声音(如救命,今后还可以更多,玻璃碎,大哭,枪声等)后,可以直接接通应急救援频道,可以是多方并发接通,让更多的人收到报警来进行救援和协调。团队希望将 WeHelp的适用范围扩大到包括老人、小孩的求救,还包括公安、应急等面向社会安全场景。
章明认为,将来单一技术很难获得大量应用,混合技术一定是方向,WeHelp 希望更好的支持混合应用,在紧急救援中结合现场的声音求救,物联探测,AI探测等获得综合感知和救援能力,并利用WeHelp的语音和视频传输构建人和物联和智能桥梁。