刘昊东作者电子科技大学硕士生学校推荐系统,表示学习研究方向

图自编码器的起源和应用

Kipf 与 Welling 16 年发表的「Variational Graph Auto-Encoders」提出了基于图的(变分)自编码器 Variational Graph Auto-Encoder(VGAE),自此开始,图自编码器凭借其简洁的 encoder-decoder 结构和高效的 encode 能力,在很多领域都派上了用场。

本文将先详尽分析最早提出图自编码器的「Variational Graph Auto-Encoders」这篇论文,将从以下几个角度进行分析:

  • VGAE 的思想 
  • 没有变分阶段的 GAE 的 encoder、decoder 阶段 
  • 有变分阶段的 VGAE 
  • 如何从确定分布再到从分布中采样 
  • 实验效果分析

然后会再介绍两篇关于如何应用图自编码器的文章。

1、Variational Graph Auto-Encoders

论文标题:Variational Graph Auto-Encoders

论文来源:NIPS 2016

论文链接:https://arxiv.org/abs/1611.07308

1.1 论文概览

先简单描述一下图自编码器的 intention 和用途:获取合适的 embedding 来表示图中的节点不是容易的事,而如果能找到合适的 embedding,就能将它们用在其他任务中。VGAE 通过 encoder-decoder 的结构可以获取到图中节点的 embedding,来支持接下来的任务,如链接预测等。

VGAE 的思想和变分自编码器(VAE)很像:利用隐变量(latent variables),让模型学习出一些分布(distribution),再从这些分布中采样得到 latent representations(或者说 embedding),这个过程是 encode 阶段

然后再利用得到的 latent representations 重构(reconstruct)出原始的图,这个过程是 decode 阶段。只不过,VGAE 的 encoder 使用了 GCN,decoder 是简单的内积(inner product)形式。

下面具体讲解变分图自编码器(VGAE)。先讲 GAE,即图自编码器(没有变分)。

专业用户独享

本文为机器之心深度精选内容,专业认证后即可阅读全文
开启专业认证
理论图自编码器
5
相关数据
重构技术

代码重构(英语:Code refactoring)指对软件代码做任何更动以增加可读性或者简化结构而不影响输出结果。 软件重构需要借助工具完成,重构工具能够修改代码同时修改所有引用该代码的地方。在极限编程的方法学中,重构需要单元测试来支持。

变分自编码器技术

变分自编码器可用于对先验数据分布进行建模。从名字上就可以看出,它包括两部分:编码器和解码器。编码器将数据分布的高级特征映射到数据的低级表征,低级表征叫作本征向量(latent vector)。解码器吸收数据的低级表征,然后输出同样数据的高级表征。变分编码器是自动编码器的升级版本,其结构跟自动编码器是类似的,也由编码器和解码器构成。在自动编码器中,需要输入一张图片,然后将一张图片编码之后得到一个隐含向量,这比原始方法的随机取一个随机噪声更好,因为这包含着原图片的信息,然后隐含向量解码得到与原图片对应的照片。但是这样其实并不能任意生成图片,因为没有办法自己去构造隐藏向量,所以它需要通过一张图片输入编码才知道得到的隐含向量是什么,这时就可以通过变分自动编码器来解决这个问题。解决办法就是在编码过程给它增加一些限制,迫使其生成的隐含向量能够粗略的遵循一个标准正态分布,这就是其与一般的自动编码器最大的不同。这样生成一张新图片就比较容易,只需要给它一个标准正态分布的随机隐含向量,这样通过解码器就能够生成想要的图片,而不需要给它一张原始图片先编码。

推荐系统技术

推荐系统(RS)主要是指应用协同智能(collaborative intelligence)做推荐的技术。推荐系统的两大主流类型是基于内容的推荐系统和协同过滤(Collaborative Filtering)。另外还有基于知识的推荐系统(包括基于本体和基于案例的推荐系统)是一类特殊的推荐系统,这类系统更加注重知识表征和推理。

隐变量技术

在统计学中,隐变量或潜变量指的是不可观测的随机变量。隐变量可以通过使用数学模型依据观测得的数据被推断出来。

推荐文章
暂无评论
暂无评论~