Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

「跨界」碰撞!当AI大佬遇上量化对冲基金之王

近日,在加利福尼亚州比佛利山庄举办的米尔肯研究所大会上,围绕人工智能展开了一场主题论坛。

这场讨论汇聚了两位大佬级人物——中国人工智能领军人物、创新工场董事长兼 CEO 李开复博士,以及著名量化投资人 D.E. Shaw 的徒弟、全球量化对冲基金巨头 Two Sigma 联合创始人 David Siegel,接受彭博商业周刊高级执行主编 Joel Weber 的连番发问。

李开复博士在人工智能领域的地位自不用提,他于 2009 年创立领先的技术投资公司创新工场,专注于培养新一代中国高科技企业,管理着 20 亿美元的双币投资基金。

近年来,创新工场投资了许多有助于推动全球经济发展的科技公司,孕育出了 10 余家独角兽公司,其中有 5 只独角兽位于人工智能领域,包括比特大陆、旷视科技、MOMENTA、第四范式地平线等,李开复博士在人工智能技术创造价值方面发挥了至关重要的作用。

David Siegel 在量化对冲领域地位超然,他在年轻时就被计算机科学吸引,对编程产生了浓厚的兴趣,从而激发了对构建智能计算系统的终生热情。从普林斯顿大学毕业后获得了麻省理工学院的计算机科学博士学位,并在人工智能实验室进行了研究。

2001年,他联合创立了 Two Sigma Investments,相信创新技术和数据科学有助于发现世界数据的价值。今天,通过使用算法和独特的文化,Two Sigma 推动了许多行业的转型,包括投资管理和保险,如今已经成为全球量化基金霸主。

在这场长达 1 小时的论坛中,他们二位从人工智能的发展情况聊到各领域应用前景、从眼下隐忧谈到未来版图,观点犀利,干货十足。

在这里,我们为大家梳理了整场论坛的精华要点,一起领略两位业内顶级大佬的精彩「跨界」思想碰撞吧。

01 AI初体验

Joel Weber:请问你们对人工智能最初的印象是什么呢?

李开复:我小时候是《星际迷航》的粉丝,那种无论身处哪里可以与「上帝」对话的机制让我联想到了语音识别。我在哥伦比亚大学读本科的时候,发现有几位研究计算机视觉语音识别方向的教授,所以我选择了人工智能这个领域。

David Siegel:我小的时候看《2001太空漫游》,那会我可能还不到十岁,就对 HAL 9000 (超级计算机)非常感兴趣,当时我就认为这将成为未来的一种可能性。

我认定人工智能肯定会在我还活着的时代出现,我当时还很天真,就为了这部电影对计算机产生了很大的热情,所以我把全部功劳都归功于亚瑟·克拉克(英国科幻小说家,《2001太空漫游》的作者)。

02 人工智能命名之「谬」

Joel Weber:你们认为,人工智能将在什么时候真正成为我们的一种时代潮流?

李开复:其实我很担心用时代潮流这个词形容人工智能并不准确。有一次,我与 David 跟一些非常聪明的人共进晚餐,其中包括几位记者,于是我让他们用自己的语言描述人工智能,不过答案都是很符合现今技术下人工智能的真实状态。

我觉得问题出在「人工智能(Artificial Intelligence)」这个称谓上。顾名思义,人工智能应该像人类一样,但现在先进技术下的人工智能和人类智慧还不能相提并论,它能比人更好地完成某些任务,但人类在一些其他事情上也做的比人工智能更好。

David Siegel:我同意开复的观点,确实有点「用词不当」。人工智能做的事情都是真实发生的,所以不能称其为人工、人造的(Artificial),它的智能程度(Intelligence)也不能等同于我们对人类智慧的理解,有点名不副实。 

03 AlphaGo引发的AI思考
Joel Weber:2016 年 AlphaGo 给予了人们对人工智能更多的想象能力,我也知道围棋在中国非常流行,二位肯定在持续关注 AlphaGo。那么这场比赛是如何改变我们对人工智能的印象的呢?

李开复:我在博士期间对电子游戏其实有过研究,当时我做的程序打败了世界冠军,我同学研发的软件打败了国际象棋冠军加里·卡斯帕罗夫,之后人们就对人工智能的未来有了期许。

我们大多数人都认为,围棋软件或是机器的研发会很困难,可能需要 25-30 年的时间,因为围棋的探索空间比国际象棋其实要大得多。而 AlphaGo 出现的如此迅速也让我大吃一惊。

人们也都渐渐发现,如果能开发到围棋的层面,人工智能就也可以解决许多其他问题。而对于中国人来说这份吃惊是双重的,因为中国人以研究出如此繁复的棋类为傲,认为人类的思考和禅性是围棋中获胜的先决条件,而现在这个冷冰冰的计算机却成为了中国最优秀的棋手。 

对中国来说,这也是一个觉醒的时刻,政府、企业家、投资机构受到启发,纷纷投身于人工智能这一领域。  

David Siegel:我们思考一下,为什么人工智能非常擅长解决游戏类的问题,包括围棋还是其他项目,其实这也是非常有趣的。 

显然,DeepMind 在这个过程中扮演非常重要的角色。围棋中最为重要的突破口就是评估如何去下每一步棋。如今我们需要了解的一点就是,人工智能要想知道怎样下下一步棋最合适,需要用人类的智慧对机器进行编程,而这一步是导向算法走向成功的关键。 

而在大多数情况下,这才是最难的一个步骤,人类对机器的编程是人工智能思维的前提,而它本身其实是机械化的。相信很多人听到 AlphaGo 都以为它能够自己想出下棋的最佳步骤,的确也可以这么认为,也确实有很多人都这么认为,但这种想法其实是有些误解的。

李开复:其实有一个很好的方法可以评估人工智能能做什么和不能做什么,那就是这个过程是不是一个优化问题,是不是为了客观的功能在寻找更优解。

如今,深度学习占据了大部分的数据内容,结果也都是可预见的,那么人工智能就可以对其进行分类、优化,所以可能在某个领域,人工智能能打败人类,而在其他问题上面,人类的做法远远优于人工智能。 

David Siegel:现在自动驾驶技术正在被人们广泛探讨,我觉得一个必提的问题是,在自动驾驶过程中,使用到开复刚刚提及的优化程序来解决方案占比多少,人类创新解决方案又占比多少。

有趣的是,并没有人能够准确地回答这个问题。我们每个人都是凭着直觉开车,没人会思考开车是不是很困难,是不是我们的大脑一直在做驾驶决定。 

最近让大家很困惑的一件事,前几天新闻里也有提及,福特公司最近声称,自动驾驶技术比预期中要困难许多。我对他们的这种见解其实毫不吃惊,因为从很大程度上来讲,没人能形容开车到底有多难,所以如果有人说一两年就能实现自动驾驶,这都是完全基于猜测,很可能是不会实现的。

04 别忘乎所以,「拆解」AI应用

Joel Weber:如何定义人工智能的范畴?

李开复:我在新书《AI未来》里谈及了人工智能有四波浪潮。

第一波浪潮最为明显,是互联网智能化,Facebook、谷歌、亚马逊等互联网公司就是这一时期快速发展的典型例子;第二波浪潮就是商业智能化,包括商业投资应用,银行、保险、信用欺诈等等;第三波浪潮是实体世界智能化,就是人工智能看和听的能力,而且现在人工智能已经比人类的表现更好了;第四波浪潮就是全自动智能化,也是最难的一个层面,因为需要融合许多感觉输入、嵌入操控能力,需要机敏性等等,这个层面本来就很难,也解释了为什么自动驾驶技术如此困难。

我同意 David 的看法,通用人工智能取代替换人类是非常困难的,我们无法预期何时能够达成,也许需要二三十年,但是也有一些短期的应用可以把整个问题细分化,人工智能就可以处理了。

如果说要把问题细分化,在高速公路上从一个服务区开到另一个服务区,那么自动驾驶肯定是可以实现的,还可以开得比人更好。这就是一种可行的商业应用。还有一种就是自动泊车,我相信你们肯定也有很多人已经在使用这一功能。

作为投资人,我们不会采用大水漫灌的方式,而是把问题细分化到有商业价值的层面,然后先解决这个层面。 

David Siegel:我同意,许多商业领导者错过了资本分配的最佳时期,因为他们想解决的问题过于困难。就像开复所说,有不计其数的应用采用人工智能非常擅长的优化程序、模式匹配,并且商业价值都很有潜力,比如在医疗、教育、金融数据分析等方面,而且人工智能分析金融数据的表现可能比任何金融分析员都更佳,所以许许多多的小目标都是可以实现的。 

但是有时候人们也会有点忘乎所以,不是有时,而是经常,所以人们总在试着解决自己能力范围之外的事情。

05 AI+医疗—数据不是非黑即白

Joel Weber:二位怎样看待 AI 在医疗方面的挑战呢?

李开复:医疗领域面临的挑战确实很大。理论上来讲,这个领域不会非常繁复困难,也对人类有着积极的贡献。但另一方面,HIPPA(Health Insurance Portability and Accountability Act)法案和其他法律规定让收集数据的过程变得有些困难,包括匿名的数据也很难收集。

假设我们有了一组来自患者 A 的匿名数据,其中包括每个医生的诊断、治疗方案和治疗成果以及患者的后续完整记录。那么整合亿万量级这样的医疗数据将非常了不起,我完全可以想象到人工智能对皮肤癌、几种肺癌患者 CT 和 MRI 的解读分析,会比医生和放射医师更加准确,这是很大的进步。人工智能在药物探索方面有着更快的速度,因为它可以更快地预测到各种可能性,从而提升医生在临床试验中的成功概率。 

我相信,随着我们储存以及整合各种诊断治疗的数据,每种疾病的诊断都能达到比全科医生更精准的程度。但现实问题是,是否有国家能够实现保护患者隐私的同时还能够整合数据,以便人工智能进行工作。

David Siegel:关于这点,我有一个想法。在美国的每一个州,考驾照或者更新驾照的时候,都有一个死后器官捐献的选项可以勾选。所以,也可以有这样一个选项,就是死后医疗的数据会用作研究,也许这些数据在我们还健在的时候需要受到保护,但不幸的是我们每一个人都会死,没有人可以永生,所以我们死后这些数据是没有必要丢弃的。为了大众的福祉,人工智能领域的进步需要基于长期、全面的数据思维。 

我个人就不太赞同欧洲的做法,我理解通用数据保护条例是一项进步,那些隐私忧虑也很有道理,我坚信隐私是需要被保护的。但另一方面,我认为保护条例需要更加细致入微,以防止人工智能算法在数据中找到的所有信息都无法访问。 

李开复:人们正在把隐私看成是一个非黑即白的问题,其实这种想法很危险。如果任何人问我们是否需要保护自己的隐私,答案都是肯定的。但其实隐私和方便、安全、社会福祉之间存在交换作用,像 David 给出的例子就是用自己的医疗数据隐私来换取社会福祉,帮助治愈癌症。

我本人就是癌症的幸存者,我愿意在我在世期间就捐献出我的数据。但如今的医院需要遵守 HIPPA 法案,所以目前没有一个能让我达成这一愿望的平台。 

关于隐私和便利这点,可能有人会认为,我希望 Facebook 获取我的数据越少越好,但我们必须明白一点,人工智能的运作原理其实就是融合大量的数据。问题的重点其实在于合理负责地使用数据,用科技保障我们的数据安全,如果说我们不提供任何数据,那么所有给我们提供便利的网站、应用程序都将不复存在。 

我们现在需要研究的是,应该给出多少数据,何时给出这些数据,如何避免数据的危险使用,而不是说应该收回自己的所有数据,那样的后果是灾难性的。

David Siegel:如果说现在会场里的每个人都能把自己的医疗数据公开用作研究,我们的平均寿命一定会提高。

06 AI+教育—无限潜力
Joel Weber:人工智能在教育领域现在表现如何?

David Siegel:从个性化学习角度来看,教育领域有许多潜在的进步可能。

调查研究显示,大多数国家从幼儿园到高中的教育都是非常线性的,一切以年级为基准。但这种教育方式既不能让学习好的学生以自己的正常速度学习,也不能让学习差的学生赶超上来。

而在个性化学习的环境中,计算机技术可以判定学生和知识之间的匹配度,然后通过计算机工具或直接把这个信息告诉学生的教师的方法,找到最适合这名学生的个性化教育方案。如果能记录下这种教育数据或标准化考试数据,我们就能通过机器学习方法找到更好、更高效的教育方式。

现在我们只能依靠教师的个人判断,虽然大多数情况下教师的判断是没错的,但是一般一个教师要负责 20-30 个学生,如果没有上述这种技术帮助他们管控学生,这种工作是很困难的。 

李开复创新工场在教育和人工智能领域都开展了投资,这二者也有一个汇合点。大概两个月前,我参加了美国 CBS 新闻台「60 Minutes」栏目,其中有一部分提到了我们在教育领域投资的公司,以及他们的产品是如何投入运营的。 

我完全同意 David 的看法,在一个理想的未来世界,教室应该是「破而后立」的。想想我们周边的环境,我们的工作、交通、吃饭的方式,都和 100 年前大有不同,但是我们的教学环境却没有改变。教学模式的确需要改变,但让任何国家改变现有教育生态和课程其实都是非常困难的。我们也深知,改变教育并非易事,就把投资方向放到了寻找可以为教育“赋能”的机会上去。 

我们现在投资的一个项目就是 VIPKID,他们的在线平台能够在美国教师和中国学生之间架起一道英语教学的桥梁,每年有 60 万中国学生能借此讲流利的英语,这就是一个很好的例子。 

人工智能可以利用动画和娱乐提升孩子们的学习体验,我们也很乐于看到人工智能在这里的潜力。而且,中国有很多农村教师缺乏经验,我们可以通过直播的方式,让一位专家教师教授 1000 个农村学生,从而提升教学质量。另外,人工智能还可以实现智能考勤,还可以有遥控系统界面,这是一种全新的教育教学模式,专家教师在视频中授课,人工智能做一些辅助工作,本地的教师也可以起到辅助作用。

在这里,人工智能有多种类型和用途,有的可以纠正英语发音,有的可以解决学生的数学问题、适应他们的需要,有的可以留作业、判作业、判考卷。这样一来,教师有更多的时间成为学生的导师、伙伴,而不是一味做重复性的工作。人工智能其实很擅长做重复性的工作,此时教师就可以成为人工智能与人之间的接点。 

David Siegel:人工智能能够基于历史规律和数据做出新的预测,而这些规律对人类来说可能很难发现。在教育应用领域,如果你有大量的数据,比如PSAT(国家优秀奖学金资格测试)分数、提高分数的方法、分数提高了多少,那么机器学习系统就能判定出哪一种方法是最优解,并且把这个最优解给到一个新学生,从而最大化地提高分数。 

目前有些学院已经这样做了,这种方法也被证明确实有效果,对比没有用过这个应用的学生,成绩能够提高大概 30%。这已经不存在于假设中了,而是切实在影响着人们生活的事例。

07 AI投资经

Joel Weber:关于人工智能,你们投资的领域和不投资的领域有哪些呢?

李开复:其实人工智能已经走过了很多阶段。起初,很少有人理解深度学习人工智能,当时有一些博士做这种当时来看起来业务繁复高深的公司,我们很愿意投资,实际上我们也没什么其他选择,同时我们也试图帮助他们发展企业,因为他们有着先人一步的优点。现在这些公司很好的带动了各种人工智能的产业,银行人工智能,客服人工智能人工智能芯片,B2B业务平台等等。 

近两年来人工智能其实有一个很大的变化,很多中国、美国学生都想学习人工智能工程,所以这个领域的门槛逐渐下降,谷歌、Facebook开发的一些工具越来越方便人们使用,也有了越来越多的人工智能工程师。虽然人工智能并没有从高深的学科变成普罗大众的消费品,但它也跻身在主流学科之中,我们现在关注的是如何为这个领域继续赋能,而不是培养许多博士生之类。

现在我们希望人工智能能够融入传统企业,创造更多的价值。用人工智能来评估商业计划书是再正常不过的事,它不是什么高新科技了。尽管如此,每年可能还是有一些公司产生非常棒的想法,我们会予以投资,也愿意在这些有风险的机会上搏一搏。相信大家有目共睹的一点是,现在有大量的数据、工程师驱动着人工智能的发展,把它融入传统商业其实是最好的盈利方式。 

David Siegel:我非常同意。我也认为人工智能是一种可以用在企业里的潜在工具。在投资商眼中,很少有投资抱着完全明确的目的,偶尔你可能就想给人工智能方面的技术提供商进行投资,帮他们做好基础建设,比如图形处理器、软件之类的。企业要想成功,有很多种工具,人工智能实际上就是其中之一。 

我个人是从另一个角度来看的,看企业是否能从更科学的角度下进行管理,那么人工智能的引入其实就是把商业过程看作科学过程,都是可以由数据和实验指导完成的。很多人认为运营企业靠的是直觉,每个人自己心里都有着仪表盘。其实商业决策需要精准的直觉,如果你能把商业活动转变为一种科学方式,充分利用数据,肯定是一件好事。

08 平常心看AI从理论走进现实

Joel Weber:人工智能从理论到现实花了很多年,我们现在又看到了它和企业正在结合,那之后的发展又会怎么样呢?

David Siegel:当一个新的技术出现后,起初的发展通常是非常缓慢的,但如果想法足够好,一段时间之后一切就位,就会进入快速发展时期,这个时期人们极度兴奋,觉得这种发展速度会一直持续,然后就会碰到瓶颈和限制,发展速度又急剧下降。 

现在人工智能还处于快速发展阶段,也很难说这个阶段会在何时过去,但可以肯定的是这个阶段确实会过去。我认为,这个趋势可能达不到人们的预期,开复,你同意吗? 

李开复:我觉得现在有许多夸张的宣传,带动了人们的预期。我认为现在是无法达到人们的预期的程度,但是确实有一些容易实现的小目标。我们现在的重点放在相对枯燥的商业应用而不是一些科幻应用,只有科幻功用越发达,自主性才越好实现。我同意 David 的观点,确实需要时间,也需要技术的突破。 

David Siege:从学术的角度来说,我个人也在一些高等院校参与学术方面的工作。我所认识这个领域的学者也没有人认为通过现在的方法,人工智能会发展到和人类智慧很像的程度,它是无法习得我们人类这种非常独特的能力的。 

我也不认识有着这种想法,或是认为这是未来可能的突破口的人。但这不意味着今后的 10 年、20 年时间内都没有人发现机器学习以外的突破口,从而把我们的技术提升到新的高度,而这也可能会发生在 50 年后,甚至 400 年后。

值得一提的是,人脑是我们了解最少的身体器官,没有证实的理论说明我们是怎么思考的,我们是怎样有创新能力和智慧的。在我看来,这是最为重要的科学未解之谜之一,我们对人脑的了解甚至不如我们对宇宙诞生的了解多。 

李开复:这也是一个通常会被人们误会的领域。你们可能听过关于奇点的言论,技术的进步会生产出和人类同等的人工智能,甚至还可以和我们的大脑相连。这些其实都非常非常遥远,一些未来主义者不负责任的预测其实也很危险。 

所以,我们眼中的人工智能应该是一种能够做一些日常工作、帮助我们提高效率的工具,而不是未来人类的替代品。 

David Siege:我们应该用一种平凡的眼光来看待。要知道,电子表格是一种非常高效的计算工具,并不是人工智能,但它刚出现的时候很多人都认为它将会终结大多会计相关的职业,但实际上它却制造了会计行业更多的就业机会。这是为什么呢? 

因为电子表格的出现让人们发现它可以对商业活动做出精细的分析,这样一来就不需要用人动脑增加数据,因为电脑已经很擅长这项工作了,人们就有时间来进行创新思考,思考这些数字对分析的含义、影响。这时,人类的创造力就有了需要。其实我也是在鼓励大家,希望人们可以把人工智能就看成像电子表格一样的工具,可以激发我们的创造力。 

09 AI会搅乱一池春水?

Joel Weber:现今人工智能技术对整个劳动市场产生很大影响,甚至可能会引起社会混乱,你们怎么看到这个问题呢?

李开复:像 David 说的,人工智能可以作为工具让我们更高效、更创新,对于本身就从事创新性、策略性、复杂性工作来说,人工智能就只是一个像电子表格一样的工具。

医生也可以利用人工智能得到一些诊疗建议,而医生本身可以提供人与人之间的沟通连接,对人工智能提出的方案进行监管、批准。这样来看这个问题也是有双面性的,确实有一些工作会受到干扰,比如一些例行工作、后勤工作等。

人们也在争论有多少行业会受到影响,也有观点认为人工智能会带来许多新的工作,我认为这两种预测都不无道理,但是很难说出一个确切的数字。

但有一件事可以肯定,就是一些例行工作的从业者可能会被替代,因为人工智能可以学习例行工作,尤其是一些白领层,可能没有技能去从事新创造出来的就业机会,因为这些机会不是例行的、规律的,如果是的话人工智能本身就会做了。所以不管我们对AI职业替代乐观还是悲观,很大一个问题就是如何重新培训失业群体,让他们在人工智能的新世界中有工作。

David Siege:我想把这个问题和我们这个时代最具挑战性的经济问题结合在一起——工资停滞。我们在创造就业机会这方面是没有问题的,问题出在收入的支配上,这一点是毋庸置疑。 

收入不平衡是一个非常复杂的问题,我也不是想要把它简化,但我觉得这种情形出现的主要原因经常被忽视,也是开复刚刚提到的,包括人工智能在内的先进科技已经完全颠覆了市场所需的技能。 

知道如何在互联网、人工智能等方面获益的人已经赚了很多钱,而没有这些技能的人就失去了讨价还价的能力,他们虽然还能找到工作,却找不到好一点的工作,他们的技能不那么珍贵,所以雇主也不会给他们太多薪水,这可能和工业革命时候出现的情况有些类似。当社会所需要的技能出现大幅变化时,我们不能指望重新培训,而是要想从幼儿园到高中的教育应该做出何种改变,把学生们教育成将来社会中的精英分子。 

在我看来,把重点放在提升教育上会更简单,也会更高效。重新培训也不是不重要,但把下一代培养地更好是我们需要保证的。 

李开复:我们要做的事有很多。比如,现在的职业学校培养的各种人才比例失衡。现在我们可以应用人工智能技术,因此不需要大量培养从事办公室后勤的人才。 

我认为,需要同情心、和人打交道的工作不会很快被人工智能取代。医护是一个增长很快的行业,但从事这一行业并不是很有吸引力,因为其薪水低、从业人员地位也不高。所以社会需要做出改变,一方面要给与那些有天赋的人相应的教育,帮助他们从事创造性的工作并有机会取得成功,另一方面对于那些能够接受常规程序性工作的人来说,让他们从事与人打交道、需要同情心的工作。因为这些工作岗位不会被取代,而那些常规的案头工作或是生产线工作则会消失。 

所以我们应该在高等教育(就像刚刚 David 说的那样)和职业教育层面都应当采取相应的行动。即便失业率能够保持在较低的水平,我们也应当采取上述行动。我们还是需要解决这些问题。

David Siege:好的一面是,有很多事情是需要人类去做的,人工智能和机器人在我们有生之年甚至更久远的时间里都不太可能取代我们干这些事情。大部分基础设施建设有关的工作,比如道路、桥梁、房屋重建等,都需要人类去做。 

我们人类拥有机器无法匹敌的大脑。尽管波士顿动力公司在机器人研发方面很先进,如果你们看过他们的视频,就会发现这些机器人真的挺酷。而且机器人技术也已经取得了长足的发展。但是我们依然十分灵巧,机器人很难从事基础设施重建的工作。 

实际上,比较乐观的情况是,如果我们改变经济运行的方式,通过提高一个行业的经济效率,会使其他行业受益。比如,50 或 100 年前的农业和今天的农业相比,劳动生产率提高了百倍。当时农民数量很多,如今已经大幅减少了。这是坏事还是好事呢? 

是好事,因为这释放了经济的其他要素。所以,如果我们通过使用人工智能系统减少某种岗位的需求,比如办公室后勤岗位、或客服代表岗位,当然了这种人工智能系统得比今天的更先进,那么这些岗位的从业人员很快会被安排到人工智能无法胜任的岗位,就像开复所说的医疗行业。 

还有教育领域,人工智能也是有缺陷的。我阅读的每一项研究成果都表明,即便技术更先进,教师与学生的互动也是必不可少的。还有任何与建筑相关的岗位和任务,都需要灵巧的手工技能。更不用说人类能够产生各种新点子,我们的经济具有创新的活力,无论美国、中国还是其他国家都是如此。把今天和二三十年前相比,就会发现当时没有人能预测到今天出现的这些创造性的商业理念。

人们经常犯这样一个错误,他们常常来找我,对我说:「David,你很乐观,那告诉我你认为未来会成为风口的 50 个新商业理念。」但是,创业创新不是这样产生的。这不是从我一个人的脑中蹦出来的,而是来源于全世界数亿人的思考。 

李开复:是的,就像我们如果回到互联网早期,预测互联网将产生什么样的新岗位,我想当时没有人能够预测到 Uber 司机这一职业。现在全世界 Uber、滴滴和其他平台上的司机有一千万。没有互联网的话,这些就业岗位就不会产生。但这一过程花了 20 年。我认为人工智能在未来 20 年内也会产生很多有意思的工作岗位。

我认为,人工智能在未来 20-30 年取代常规的程序性工作,这对于人类是一件好事,因为这将把我们从程序性工作中解放出来,去找到更有成就感的事情。可能有人会说这些工作并不理想,但我想问,你为老人提供帮助,看到他们脸上的微笑,每天结束后给他们一个拥抱,这难道不比在生产线上工作、每天进行同样的操作更有成就感?

10 解读AI大国的发展

Joel Weber:人工智能领域大约有九家很有优势的科技企业,美国和中国都是AI大国,这对其他国家意味着什么?

李开复:我认为巨头公司会保持强劲的优势,打败谷歌、亚马逊阿里巴巴腾讯这样的公司将是很困难的事。因为随着它们收集的数据越来越多,能够更好地了解用户,通过使用人工智能,这些公司能够了解盈亏底线,从而成为最大的受益者。 

但我认为,未来互联网不会是唯一的平台。在金融保险领域、医疗和教育领域都会有应用。人工智能最终能够带来的机遇、机会空间会远远大于互联网的可利用空间。所以对于融入或打破传统业务模式的 B2B 企业来说,它们不会因为互联网巨头获取了更多的消费者数据就被打败。 

David Siege:我想补充的是,美国和中国拥有所谓的人工智能优势,这是事实,某种程度上和两国较为强大的创业文化氛围有关。与欧洲相比,硅谷长期以来拥有技术优势。这和人工智能无关,而是因为大的创业生态有利于新技术的快速发展,以色列等其他国家也构建了这样的生态环境。我认为,两国的优势主要还是源于我们所拥有的创新型经济。  

11 下一代AI畅想
Joel Weber:你们认为接下来几年人工智能将取得什么样的进步?下一代人工智能会是什么样的?

David Siege:我认为深度学习仍然处在早期阶段。人们用这一技术发明的应用程序令人印象颇深,且种类多样,但我认为我们现在收获的只是深度学习的早期成果。尤其是未来会产生更好的工具,让普通工程师能够用很复杂的方式使用这一技术。因此,技术基础设施的实际改进将很快成为一场技术性很强的讨论。

你现在看到的应用,比如谷歌的技术就令人印象十分深刻。这些技术需要成千上万的谷歌博士和其他高技术人才来开发,这一过程实现了民主化。我不久前刚在底特律参加了一个很不错的活动——机器人大赛,3 万多名儿童参加了这场大赛。这些孩子用机器学习来控制他们的机器人。有些孩子还在上初中,不少已经上了高中,他们用以控制机器人的东西,正是基于谷歌的工作成果。当他们走上工作岗位后,就会认为机器学习和用电子表格一样平常。 

李开复:嗯,我同意 David 的意见。的确,在很多科技领域,人们正在不断地推动前沿技术发展,从弱人工智能一步步迈向强人工智能。这是很令人激动的。但人工智能技术的平台化是最重要的事情,会产生最大的影响。 

虽然人工智能不再是高深技术,但全世界能使用这一技术的可能只有一百万人左右,远远少于可以使用电子表格的人,也少于能在 iOS 或安卓系统上编程的人。什么时候工程师、甚至是普通人都能够使用人工智能了,就是人工智能扩散真正实现的时候。到那时,任何公司都会开始将人工智能作为工具,将产生最大的价值。可以预见,这将在三四年后实现。

12 最得意的投资手笔

Joel Weber:说一说你们所做的最佳 AI 投资吧

David Siege:嗯,我得说那是我的公司(Two Sigma)。

李开复:我们所做的最大的投资是创新奇智,这是一家快速发展的 B2B 人工智能公司,将人工智能融入零售生产。 

我认为人工智能公司的一大挑战就在于其高估值,它们接近 IPO 的时候,必须通过合理的财务指标来证明其高估值的合理性。我们为创新奇智打造了一个强大的商业团队,他们创造了巨大的营收,我认为这使创新奇智这家公司拥有十分广阔的前景。

创新工场
创新工场

李开复博士于2009年创办的国内一流创业投资机构,主要关注人工智能、消费升级、教育、B2B企业服务、文化娱乐等领域,是最懂AI技术的Tech VC。

http://www.chuangxin.com/
产业AlphaGo自动驾驶深度学习教育医疗量化投资
2
相关数据
Amazon机构

亚马逊(英语:Amazon.com Inc.,NASDAQ:AMZN)是一家总部位于美国西雅图的跨国电子商务企业,业务起始于线上书店,不久之后商品走向多元化。目前是全球最大的互联网线上零售商之一,也是美国《财富》杂志2016年评选的全球最大500家公司的排行榜中的第44名。

https://www.amazon.com/
相关技术
DeepMind机构

DeepMind是一家英国的人工智能公司。公司创建于2010年,最初名称是DeepMind科技(DeepMind Technologies Limited),在2014年被谷歌收购。在2010年由杰米斯·哈萨比斯,谢恩·列格和穆斯塔法·苏莱曼成立创业公司。继AlphaGo之后,Google DeepMind首席执行官杰米斯·哈萨比斯表示将研究用人工智能与人类玩其他游戏,例如即时战略游戏《星际争霸II》(StarCraft II)。深度AI如果能直接使用在其他各种不同领域,除了未来能玩不同的游戏外,例如自动驾驶、投资顾问、音乐评论、甚至司法判决等等目前需要人脑才能处理的工作,基本上也可以直接使用相同的神经网上去学而习得与人类相同的思考力。

https://deepmind.com/
第四范式机构

第四范式成立于2014年底,是国际领先的人工智能平台与技术服务提供商, 依托于领先的机器学习技术与丰富的行业实践经验,第四范式打造了企业智能化转型战略产品“天枢”,通过构建以消费者为中心的全链路客户流量运营,帮助企业实现以创造业务价值为目标的智能化转型。此外,第四范式为企业树立了正确的转型目标和方法,通过自动化AI应用构建平台第四范式HyperCycle ML,提升AI建模效率,降低AI应用门槛,将AI技术快速、规模化落地到企业众多业务场景中,提升业务场景价值。同时,第四范式采用软件定义算力的先进理念为企业提供软硬一体AI集成系统SageOne,降低企业AI部署总体拥有成本,推动企业全面智能化转型进程。目前,第四范式已为金融、零售、能源、医疗、制造、互联网、媒体等行业成功落地上万个AI应用,助力各行业企业的AI创新变革。

https://www.4paradigm.com
地平线机构

地平线具有领先的人工智能算法和芯片设计能力,通过软硬结合,设计开发高性能、低成本、低功耗的边缘人工智能芯片及解决方案,开放赋能合作伙伴。面向智能驾驶和AIoT,地平线可提供超高性价比的边缘AI芯片、极致的功耗效率、开放的工具链、丰富的算法模型样例和全面的赋能服务。

horizon.ai
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

自动驾驶技术技术

从 20 世纪 80 年代首次成功演示以来(Dickmanns & Mysliwetz (1992); Dickmanns & Graefe (1988); Thorpe et al. (1988)),自动驾驶汽车领域已经取得了巨大进展。尽管有了这些进展,但在任意复杂环境中实现完全自动驾驶导航仍被认为还需要数十年的发展。原因有两个:首先,在复杂的动态环境中运行的自动驾驶系统需要人工智能归纳不可预测的情境,从而进行实时推论。第二,信息性决策需要准确的感知,目前大部分已有的计算机视觉系统有一定的错误率,这是自动驾驶导航所无法接受的。

数据分析技术

数据分析是一类统计方法,其主要特点是多维性和描述性。有些几何方法有助于揭示不同的数据之间存在的关系,并绘制出统计信息图,以更简洁的解释这些数据中包含的主要信息。其他一些用于收集数据,以便弄清哪些是同质的,从而更好地了解数据。 数据分析可以处理大量数据,并确定这些数据最有用的部分。

模式匹配技术

在计算机科学中,模式匹配就是检查特定序列的标记是否存在某种模式的组成部分。 与模式识别相比,匹配通常必须是精确的。 模式通常具有序列或树结构的形式。 模式匹配的使用包括输出令牌序列内的模式的位置(如果有的话),输出匹配模式的某个分量,以及用另一个令牌序列(即搜索和替换)替换匹配模式。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

弱人工智能技术

弱人工智能(weak AI),也被称为窄AI,是专注于某一特定狭窄领域任务的人工智能。 相对于可以用来解决通用问题的强(泛)人工智能,几乎目前所有的人工智能都属于弱人工智能的范畴I。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

数据科学技术

数据科学,又称资料科学,是一门利用数据学习知识的学科,其目标是通过从数据中提取出有价值的部分来生产数据产品。它结合了诸多领域中的理论和技术,包括应用数学、统计、模式识别、机器学习、数据可视化、数据仓库以及高性能计算。数据科学通过运用各种相关的数据来帮助非专业人士理解问题。

商业智能技术

商业智能(Business Intelligence,BI),又称商业智慧或商务智能,指用现代数据仓库技术、线上分析处理技术、数据挖掘和数据展现技术进行数据分析以实现商业价值。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

强人工智能技术

强人工智能或通用人工智能(Strong AI或者 Artificial General Intelligence)是具备与人类同等智慧、或超越人类的人工智能,能表现正常人类所具有的所有智能行为。强人工智能是人工智能研究的主要目标之一,同时也是科幻小说和未来学家所讨论的主要议题。相对的,弱人工智能(applied AI,narrow AI,weak AI)只处理特定的问题。弱人工智能不需要具有人类完整的认知能力,甚至是完全不具有人类所拥有的感官认知能力,只要设计得看起来像有智慧就可以了。由于过去的智能程式多是弱人工智能,发现这个具有领域的局限性,人们一度觉得强人工智能是不可能的。而强人工智能也指通用人工智能(artificial general intelligence,AGI),或具备执行一般智慧行为的能力。强人工智能通常把人工智能和意识、感性、知识和自觉等人类的特征互相连结。

语音识别技术

自动语音识别是一种将口头语音转换为实时可读文本的技术。自动语音识别也称为语音识别(Speech Recognition)或计算机语音识别(Computer Speech Recognition)。自动语音识别是一个多学科交叉的领域,它与声学、语音学、语言学、数字信号处理理论、信息论、计算机科学等众多学科紧密相连。由于语音信号的多样性和复杂性,目前的语音识别系统只能在一定的限制条件下获得满意的性能,或者说只能应用于某些特定的场合。自动语音识别在人工智能领域占据着极其重要的位置。

阿里巴巴机构

阿里巴巴网络技术有限公司(简称:阿里巴巴集团)是以曾担任英语教师的马云为首的18人于1999年在浙江杭州创立的公司。 阿里巴巴集团经营多项业务,另外也从关联公司的业务和服务中取得经营商业生态系统上的支援。业务和关联公司的业务包括:淘宝网、天猫、聚划算、全球速卖通、阿里巴巴国际交易市场、1688、阿里妈妈、阿里云、蚂蚁金服、菜鸟网络等。 2014年9月19日,阿里巴巴集团在纽约证券交易所正式挂牌上市,股票代码“BABA”,创始人和董事局主席为马云。 2018年7月19日,全球同步《财富》世界500强排行榜发布,阿里巴巴集团排名300位。2018年12月,阿里巴巴入围2018世界品牌500强。

https://www.alibabagroup.com/
相关技术
联想集团机构

联想集团是1984年中国科学院计算技术研究所投资20万元人民币,由11名科技人员创办,是中国的一家在信息产业内多元化发展的大型企业集团,和富有创新性的国际化的科技公司。 从1996年开始,联想电脑销量一直位居中国国内市场首位;2005年,联想集团收购IBM PC(Personal computer,个人电脑)事业部;2013年,联想电脑销售量升居世界第一,成为全球最大的PC生产厂商。2014年10月,联想集团宣布了该公司已经完成对摩托罗拉移动的收购。 作为全球电脑市场的领导企业,联想从事开发、制造并销售可靠的、安全易用的技术产品及优质专业的服务,帮助全球客户和合作伙伴取得成功。联想公司主要生产台式电脑、服务器、笔记本电脑、智能电视、打印机、掌上电脑、主板、手机、一体机电脑等商品。 自2014年4月1日起, 联想集团成立了四个新的、相对独立的业务集团,分别是PC业务集团、移动业务集团、企业级业务集团、云服务业务集团。2016年8月,全国工商联发布“2016中国民营企业500强”榜单,联想名列第四。 2018年12月,世界品牌实验室编制的《2018世界品牌500强》揭晓,排名第102。

旷视科技机构

旷视成立于2011年,是全球领先的人工智能产品和解决方案公司。深度学习是旷视的核心竞争力,我们打造出自研的AI生产力平台Brain++并开源其核心——深度学习框架“天元”,实现了算法的高效开发与部署。在持续引领技术进步的同时,我们推动AI产业的商业化落地,聚焦个人物联网、城市物联网、供应链物联网三大赛道,为个人用户带来更出色的美学体验与安全保障、让城市空间更有序、并帮助企业实现工业、仓储数字化升级。我们提供包括算法、软件和硬件产品在内的全栈式、一体化解决方案。

https://www.megvii.com
腾讯机构

腾讯,1998年11月诞生于中国深圳,是一家以互联网为基础的科技与文化公司。我们的使命是“通过互联网服务提升人类生活品质”。腾讯秉承着 “一切以用户价值为依归”的经营理念,为亿万网民提供优质的互联网综合服务。 腾讯的战略目标是“连接一切”,我们长期致力于社交平台与数字内容两大核心业务:一方面通过微信与QQ等社交平台,实现人与人、服务及设备的智慧连接;另一方面为数以亿计的用户提供优质的新闻、视频、游戏、音乐、文学、动漫、影业等数字内容产品及相关服务。我们还积极推动金融科技的发展,通过普及移动支付等技术能力,为智慧交通、智慧零售、智慧城市等领域提供有力支持。 腾讯希望成为各行各业的数字化助手,助力数字中国建设。在工业、医疗、零售、教育等各个领域,腾讯为传统行业的数字化转型升级提供“数字接口”和“数字工具箱”。我们秉持数字工匠精神,希望用数字创新提升每个人的生活品质。随着“互联网+”战略实施和数字经济的发展,我们通过战略合作与开放平台,与合作伙伴共建数字生态共同体,推进云计算、大数据、人工智能等前沿科技与各行各业的融合发展及创新共赢。多年来,腾讯的开放生态带动社会创业就业人次达数千万,相关创业企业估值已达数千亿元。 腾讯的愿景是成为“最受尊敬的互联网企业”。我们始终坚守“科技向善”的初心,运用科技手段助力公益事业发展,并将社会责任融入每一个产品。2007年,腾讯倡导并发起了中国互联网第一家在民政部注册的全国性非公募基金会——腾讯公益慈善基金会。腾讯公益致力于成为“人人可公益的创连者”,以互联网核心能力推动公益行业的长远发展为己任。腾讯公益联合多方发起了中国首个互联网公益日——99公益日,帮助公益组织和广大爱心网友、企业之间形成良好的公益生态,让透明化的“指尖公益”融入亿万网民的生活。

http://www.tencent.com/
创新工场机构

创新工场由李开复博士创办于2009年9月,作为国内的创业投资机构,创新工场深耕在人工智能&大数据、消费和互联网、B2B&企业升级、教育、医疗等领域,并不断探索与创新,致力于打造集创业平台、资金支持、投后服务等的全方位生态投资服务平台。

http://www.chuangxin.com/
暂无评论
暂无评论~