新电子来源

人工智能推动,ASIC芯片市场占比大幅提升

人工智能风潮席卷全球,而为了加速AI应用普及,并降低云端运算工作负载,实现更多的创新应用,边缘运算需求与日俱增,AI开始从「云端」走向「终端」,也因而推升ASIC需求;

根据市调机构Ovum预估,2018~2025年,ASIC的市占率将从11%大幅增加至48%。Ovum调查报告指出,在2016年,云端(包含企业、数据中心等)为深度学习晶片的主要营收领域,占了80%。不过,到了2025年,此一比例将会改变,转变成边缘(Edge)占了80%,而云端的比例则降为20%。这边所指的边缘意指终端设备,且以消费性产品为中心(而非小型伺服器或是路由器),包括移动装置(手机、平板)、头戴式显示器(HMD),如AR/VR /MR、智能音箱、机器人、无人机、汽车、安全摄影镜头等。

Tractica/Ovum研究总监Aditya Kaul表示,现今大多数的AI处理器,如GPU,多用于云端伺服器、资料中心,以在云端上进行AI训练和推论。不过,随着隐私、安全性需求增加,加上为了降低成本、延迟及打破频宽限制等因素,分散式AI随之兴起,越来越多AI边缘应用案例出现。例如苹果的A12仿生芯片,其具备新一代「神经网路引擎」,以即时机器学习技术,改变智能手机的使用体验。

Kaul指出,简而言之,AI从云端转向边缘是现在进行式,当然目前AI在边缘设备上多还是以推论为主,而非训练。不过随着AI创新应用增加,有越来越对芯片商尝试提升终端装置处理器的运算效能,为的就是不用再传送资料至云端进行资料运算、推理和训练。也因此,各式的处理器纷纷问世,像是CPU、FPGA、GPU、ASIC、NPU或SoC Accelerator等。

其中,ASIC的市占率可望随着边缘运算的需求增加而明显攀升,从2018年的11%增加至2025年的52%。Kaul进一步解释,ASIC之所以受到青睐,原因在于新兴的深度学习处理器架构多以图形(Graph)或Tensorflow为基础架构;且上述提到AI边缘运算受限于功耗和运算效能,因此多以推论为主,而非训练。然而,若假设到2021年时,终端设备将导入大量AI芯片,所需要的便是能在同一个芯片上进行推理和训练,可因应分散式运算且又具低功耗的IC,因此ASIC需求将持续上扬,实现更多AI边缘应用案例。

*文章内容系作者个人观点,不代表半导体行业观察对观点赞同或支持。

半导体行业观察
半导体行业观察

最有深度的半导体新媒体,实时、专业、原创、深度,30万半导体精英关注!专注观察全球半导体最新资讯、技术前沿、发展趋势。

产业深度学习边缘计算芯片ASIC
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

无人机技术

无人机(Uncrewed vehicle、Unmanned vehicle、Drone)或称无人载具是一种无搭载人员的载具。通常使用遥控、导引或自动驾驶来控制。可在科学研究、军事、休闲娱乐用途上使用。

推荐文章
暂无评论
暂无评论~