2019人工智能5大领域发展趋势

最近行业分析机构CBInsights发布了2019年AI趋势报告,这份84页的报告详尽阐述了人工智能领域2019年的25种发展趋势,可以为不同参与角色提供决策参考。为了帮助大家提高阅读报告的效率,小编对这份报告进行分析和解读后,将25种发展趋势进一步总结为五大领域发展趋势,希望对大家有所帮助。

原文下载链接:

https://www.cbinsights.com/research/report/ai-trends-2019/

一、底层技术更新

关键词:开源框架、胶囊网络、生成式对抗网络、联合学习、强化学习

报告论述:越来越多的公司将使用包括caffe2、 Py Torch以及TensorFlow在内的开源框架降低人工智能行业进入门槛,而胶囊网络(capsule networks)会对卷积神经网络(CNN)发起挑战。“生成式对抗网络”(GAN)将更加流行,用于内容制作。联合学习(Federated Learning)方法将用于更多人工智能设备上,旨在使用这个丰富的数据集的同时保护敏感数据。关于强化学习(Reinforcement Learning)的研究申请会越来越多。

解读:在可见的未来,人工智能的普及化程度会越来越高。尽管之前有很人相关人士曾预言AI寒冬的到来,但是从层出不穷的开源框架可以看出,各大公司对于人工智能的进一步普及和简化应用,仍抱有极大的信心。而新的胶囊网络和日渐流行的强化学习方法,让图像和物体的识别变得更加精确,拥有更多的视角的同时,突破数据限制。

简而言之,在未来的一年,人工智能的进入门槛会越来越低,而且人工智能的识别性能也会更强、更精确,他们的自我学习能力会显著提高。智能设备生产的数据利用度也会大大提升,人工智能在今年会朝着更聪明更有效率的方向发展,同时隐私及敏感数据会被更好的保护。

二、技术应用

关键词:人工智能终端化、人脸识别、语言处理、车辆自动化驾驶、AI聊天机器人

报告论述:通过将AI算法加载于终端设备上,会使人工智能终端化变得普及,但依然面临着储存和开发上的困境。人脸识别的应用范围会愈发广泛,但有引发安全问题风险,仍有待改进。基于自然语言处理(NLP)工作的翻译系统拥有极大的市场需求,但低资源语言和少数民族语言的开发和应用依然存在缺口。自动化驾驶的汽车市场潜力巨大,预计2025年其市场利润能达800亿美元,物流等相关行业会成为首批应用全自动驾驶的行业,但实现全自动的未来依然不明朗。AI聊天机器人吸引了包括国外的FAMGA(Facebook,Apple,Microsoft,Google与Amazon)以及国内的BAT等科技巨头的关注。

解读:5G的快速发展,以及智能设备的快速普及,使得各大公司更倾向于在智能手机、汽车甚至可穿戴设备等边缘设备上运行AI算法。其实,在之前AI已经通过语音和手势识别技术渗透汽车、家居领域。例如,巨头谷歌和亚马逊在汽车中分别引入了它们知名的语音识别解决方案“ok,google!”和“alexa”。这些技术形成了一整套的技术融合,加速了人工智能的技术应用。在2019年,5G在全球范围类的广泛试用,将会进一步推动车辆自动化甚至是无人驾驶的商用加速。语言处理技术的发展,让对话式AI的发展会更加顺畅,未来的你不管是说着哪一种方言,位于电话那一头的AI接线员都能准确无误地识别出来,并且通过富有感情的声音给你一个答案。

三、医药行业AI应用

关键词:医药成像与诊断、下一代假肢、临床试验患者招募、先进医疗生物识别技术、药物发现

报告论述:“AI即医疗设备”趋势正加速推进,更多的AI成像和诊断公司正在进行商业化探索,智能手机的普及和图像识别技术的进步正在把手机变成强大的家庭诊断工具。使用机器学习解码来自人体传感器的信号,以及更多的新媒介解决方案,将助力下一代假肢领域发展。苹果推出的两个开源框架——ResearchKit和CareKit,将有助于解决临床试验患者招募中的互操作性问题。医疗生物识别技术将被用于被动监控,为新的诊断方法和识别以前未知的危险因素铺平道路。制药公司正在投资AI和药物研发,以发现新的治疗方案,并改变旷日持久的药物研发过程。

解读:医疗物联网(IoMT)、AI全科医生机器人、远程医疗、医疗中的可穿戴设备、云计算,随着人工智能在医疗行业的长足发展,它们可能正在成为成为现实。现在,即使是简单的智能手机具有医疗应用程序也可以执行血液检查,心电图监测等。医疗中的这种自动化也使得可以向患者发送关于正常检查的预期时间的自动提示。VR以及5G技术的发展,使得之前较为昂贵稀奇的远程医疗变得触手可及。从患者招募到药物开发,AI如今都在全程参与,新型药物的研发应用时间将会比之前更短,而且价格也会更低。对于残障人士而言,下一代假肢技术也在进步,这将有助于他们更加容易地恢复到常人生活状态。

四、设备维护与网络优化

关键词:预测性维护、后台自动化、综合训练数据、网络优化、网络威胁狩猎

报告论述:随着工业传感器成本的降低、机器学习算法的进步,以及对边缘计算的推动,AI-IIoT用于设备或单个部件的预测性维护会更加广泛。人工智能正在推动管理工作走向自动化,但面临数据的不同性质和格式的挑战。AI可以通过混合现实世界和模拟数据进行训练建立的合成数据集,来训练人工智能算法。通过将基于AI的解决方案集成到5G网络中,可以进一步优化电信网络。使用机器学习主动“搜寻”威胁正在网络安全中获得动力,但仍面临动态环境变化以及误报的挑战。

解读:人工智能随着物联网的发展,在工业领域的应用已经较为明晰,更智能的机器学习算法和实时联网的工业传感器,进一步提高了设备本身的智能化,在不久的将来,设备的故障可以通过算法来提前预测,会节省大量的意外成本和设备停转损失。由于人工智能的介入,机器运转的后台维护工作,将会变得更加有效率,会节省更多的人力成本。而且人

THU数据派
THU数据派

THU数据派"基于清华,放眼世界",以扎实的理工功底闯荡“数据江湖”。发布全球大数据资讯,定期组织线下活动,分享前沿产业动态。了解清华大数据,敬请关注姐妹号“数据派THU”。

产业聊天机器人自动驾驶人脸识别强化学习联合学习生成对抗网络胶囊网络医疗
相关数据
Amazon机构

亚马逊(英语:Amazon.com Inc.,NASDAQ:AMZN)是一家总部位于美国西雅图的跨国电子商务企业,业务起始于线上书店,不久之后商品走向多元化。目前是全球最大的互联网线上零售商之一,也是美国《财富》杂志2016年评选的全球最大500家公司的排行榜中的第44名。

https://www.amazon.com/
相关技术
自动驾驶技术技术

从 20 世纪 80 年代首次成功演示以来(Dickmanns & Mysliwetz (1992); Dickmanns & Graefe (1988); Thorpe et al. (1988)),自动驾驶汽车领域已经取得了巨大进展。尽管有了这些进展,但在任意复杂环境中实现完全自动驾驶导航仍被认为还需要数十年的发展。原因有两个:首先,在复杂的动态环境中运行的自动驾驶系统需要人工智能归纳不可预测的情境,从而进行实时推论。第二,信息性决策需要准确的感知,目前大部分已有的计算机视觉系统有一定的错误率,这是自动驾驶导航所无法接受的。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

人脸识别技术

广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。 人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。

边缘计算技术

边缘运算(英语:Edge computing),又译为边缘计算,是一种分散式运算的架构,将应用程序、数据资料与服务的运算,由网络中心节点,移往网络逻辑上的边缘节点来处理。边缘运算将原本完全由中心节点处理大型服务加以分解,切割成更小与更容易管理的部分,分散到边缘节点去处理。边缘节点更接近于用户终端装置,可以加快资料的处理与传送速度,减少延迟。在这种架构下,资料的分析与知识的产生,更接近于数据资料的来源,因此更适合处理大数据。

TensorFlow技术

TensorFlow是一个开源软件库,用于各种感知和语言理解任务的机器学习。目前被50个团队用于研究和生产许多Google商业产品,如语音识别、Gmail、Google 相册和搜索,其中许多产品曾使用过其前任软件DistBelief。

卷积神经网络技术

卷积神经网路(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网路由一个或多个卷积层和顶端的全连通层(对应经典的神经网路)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网路能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网路在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网路,卷积神经网路需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。 卷积网络是一种专门用于处理具有已知的、网格状拓扑的数据的神经网络。例如时间序列数据,它可以被认为是以一定时间间隔采样的一维网格,又如图像数据,其可以被认为是二维像素网格。

云计算技术

云计算(英语:cloud computing),是一种基于互联网的计算方式,通过这种方式,共享的软硬件资源和信息可以按需求提供给计算机各种终端和其他设备。

聊天机器人技术

聊天机器人是经由对话或文字进行交谈的计算机程序。能够模拟人类对话,通过图灵测试。 聊天机器人可用于实用的目的,如客户服务或资讯获取。有些聊天机器人会搭载自然语言处理系统,但大多简单的系统只会撷取输入的关键字,再从数据库中找寻最合适的应答句。

语音识别技术

自动语音识别是一种将口头语音转换为实时可读文本的技术。自动语音识别也称为语音识别(Speech Recognition)或计算机语音识别(Computer Speech Recognition)。自动语音识别是一个多学科交叉的领域,它与声学、语音学、语言学、数字信号处理理论、信息论、计算机科学等众多学科紧密相连。由于语音信号的多样性和复杂性,目前的语音识别系统只能在一定的限制条件下获得满意的性能,或者说只能应用于某些特定的场合。自动语音识别在人工智能领域占据着极其重要的位置。

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

强化学习技术

强化学习是一种试错方法,其目标是让软件智能体在特定环境中能够采取回报最大化的行为。强化学习在马尔可夫决策过程环境中主要使用的技术是动态规划(Dynamic Programming)。流行的强化学习方法包括自适应动态规划(ADP)、时间差分(TD)学习、状态-动作-回报-状态-动作(SARSA)算法、Q 学习、深度强化学习(DQN);其应用包括下棋类游戏、机器人控制和工作调度等。

物联网技术技术

物联网(英语:Internet of Things,缩写IoT)是互联网、传统电信网等信息承载体,让所有能行使独立功能的普通物体实现互联互通的网络。物联网一般为无线网,而由于每个人周围的设备可以达到一千至五千个,所以物联网可能要包含500兆至一千兆个物体。在物联网上,每个人都可以应用电子标签将真实的物体上网联结,在物联网上都可以查出它们的具体位置。通过物联网可以用中心计算机对机器、设备、人员进行集中管理、控制,也可以对家庭设备、汽车进行遥控,以及搜索位置、防止物品被盗等,类似自动化操控系统,同时通过收集这些小事的数据,最后可以聚集成大数据,包含重新设计道路以减少车祸、都市更新、灾害预测与犯罪防治、流行病控制等等社会的重大改变,实现物和物相联。

5G技术

第五代移动通信系统(5th generation mobile networks),简称5G,是4G系统后的延伸。美国时间2018年6月13日,圣地牙哥3GPP会议订下第一个国际5G标准。由于物理波段的限制,5G 的网络也将会与其他通信技术并用,包含长距离的其他传统电信波段。

推荐文章
暂无评论
暂无评论~