论文题目
Semi-supervised Learning on Graphs with Generative Adversarial Nets
作者:
Ming Ding,Jie Tang,Jie Zhang
推荐理由:
这是第一篇将生成对抗网络的思想用于图上的半监督学习任务的工作,达到了state-of-art的效果;除此之外,文章也形象地阐述了生成的样本如何提升半监督学习的效果并给出博弈论的表示和理论分析。
工作的动机在不同聚类簇之间的density gap里生成假样本,让分类学到的分类函数在分辨真假的同时,阻碍了density gap中的天然连续性。
为了生成density gap中的样本,文章构造了一种特殊的生成器-判别器的博弈均衡状态。使得表示层的中心区域成为density gap。
文章在取得state-of-art效果的同时,也分析了一些现象,如被节点判别为假的概率与分类函数的光滑程度之间的关系,很有启发意义。