MIT 6.S094自动驾驶课程第5讲 以人为本

本周更新至:第五讲

以人为本

Deep Learning for Human-Centered Semi-Autonomous Vehicles

时长30分钟

带有中文字幕

马上观看


这门【深度学习自动驾驶】课程由麻省理工MIT开设,话题前沿且实践性质很强。课程首先引导大家了解深度学习,之后大家可以自己“造”一辆无人车(的算法🌚)!

课程面向机器学习初学者,但已经有大量经验的研究人员也能从课程提供的从实践出发的深度学习方法和应用中受益。

课程主讲Lex Fridman与TA团队

大数据文摘已取得课程翻译授权,并联合北京邮电大学模式识别实验室组织了视频汉化,免费发布。

课程视频【中文字幕】学习地址:

(连载中,请收藏!点击文末阅读原文,可直接加入学习)

http://study.163.com/course/introduction/1004938039.htm

MIT深度学习自动驾驶课程页面(所有资料汇总):

https://selfdrivingcars.mit.edu/

本课时PPT精华



大数据文摘其他重磅课程汉化

《牛津大学xDeepMind深度学习自然语言处理》课程连载中,复制打开链接免费加入学习:

http://study.163.com/course/introduction/1004336028.htm

大数据文摘
大数据文摘

秉承“普及数据思维,传播数据文化,助⼒产业发展”的企业⽂化,我们专注于数据领域的资讯、案例、技术,形成了“媒体+教育+⼈才服务”的良性⽣态,致⼒于打造精准数据科学社区。

入门自动驾驶
3
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

自动驾驶技术技术

从 20 世纪 80 年代首次成功演示以来(Dickmanns & Mysliwetz (1992); Dickmanns & Graefe (1988); Thorpe et al. (1988)),自动驾驶汽车领域已经取得了巨大进展。尽管有了这些进展,但在任意复杂环境中实现完全自动驾驶导航仍被认为还需要数十年的发展。原因有两个:首先,在复杂的动态环境中运行的自动驾驶系统需要人工智能归纳不可预测的情境,从而进行实时推论。第二,信息性决策需要准确的感知,目前大部分已有的计算机视觉系统有一定的错误率,这是自动驾驶导航所无法接受的。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

模式识别技术

模式识别(英语:Pattern recognition),就是通过计算机用数学技术方法来研究模式的自动处理和判读。 我们把环境与客体统称为“模式”。 随着计算机技术的发展,人类有可能研究复杂的信息处理过程。 信息处理过程的一个重要形式是生命体对环境及客体的识别。其概念与数据挖掘、机器学习类似。

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

推荐文章
暂无评论
暂无评论~