免费上机实践深度学习:TensorFlow 通用框架 Estimator

实验介绍了如何使用高层API:Estimator来训练四个最基本的网络结构完成mnist手写数字识别。

前言

偶然发现开发者实验室腾讯云非常适合教学有代码的内容。

于是将上篇文章TensorFlow高层API Custom Estimator建立CNN+RNN的演示增改了一下,变成可上机实践的在线实验。

内容

演示视频:

实验链接地址:

TensorFlow - 高阶 API Estimator 搭建网络cloud.tencent.com

实验介绍了如何使用高层API:Estimator来训练四个最基本的网络结构完成mnist手写数字识别

  • 二维卷积神经网络
  • 循环神经网络
  • 双向循环神经网络
  • 一维卷积+循环网络

掌握了基本流程之后,大家就可以将网络结构替换成各种新论文中的结构,也可以仅通过改tfrecord直接使用相同网络。

注意

  • 建议先浏览“实验手册”掌握理论部分之后再上机操作。讲解部分比文章要全面。
  • 先浏览目录,知道整个代码的流程。
  • 实验有4个神经网络结构,时间不够的话就只运行LeNet的结果,其他网络结构的训练流程都一样。
  • 训练神经网络的时候由于把日志设置成了WARN,并不会输出内容。大约8分钟左右会训练完毕打出结果。不要担心死机了。
  • 鼓励大家用自己的机器去继续实验练习,或者使用https://colab.research.google.com/notebooks/welcome.ipynb的GPU,速度会快十多倍。
  • 实验虽然包括了所有基本网络结构的使用,但是还未涉及变长RNN的处理(有时间专门写一篇)。
超智能体
超智能体

分享简单易懂深度学习知识。

工程TensorFlow
4
相关数据
TensorFlow技术

TensorFlow是一个开源软件库,用于各种感知和语言理解任务的机器学习。目前被50个团队用于研究和生产许多Google商业产品,如语音识别、Gmail、Google 相册和搜索,其中许多产品曾使用过其前任软件DistBelief。

张量技术

张量是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 维空间内,有 个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。称为该张量的秩或阶(与矩阵的秩和阶均无关系)。 在数学里,张量是一种几何实体,或者说广义上的“数量”。张量概念包括标量、矢量和线性算子。张量可以用坐标系统来表达,记作标量的数组,但它是定义为“不依赖于参照系的选择的”。张量在物理和工程学中很重要。例如在扩散张量成像中,表达器官对于水的在各个方向的微分透性的张量可以用来产生大脑的扫描图。工程上最重要的例子可能就是应力张量和应变张量了,它们都是二阶张量,对于一般线性材料他们之间的关系由一个四阶弹性张量来决定。

LeNet技术

LeNet 诞生于 1994 年,是最早的卷积神经网络之一,并且推动了深度学习领域的发展。自从 1988 年开始,在许多次成功的迭代后,这项由 Yann LeCun 完成的开拓性成果被命名为 LeNet5。LeNet5 的架构基于这样的观点:(尤其是)图像的特征分布在整张图像上,以及带有可学习参数的卷积是一种用少量参数在多个位置上提取相似特征的有效方式。在那时候,没有 GPU 帮助训练,甚至 CPU 的速度也很慢。因此,能够保存参数以及计算过程是一个关键进展。这和将每个像素用作一个大型多层神经网络的单独输入相反。LeNet5 阐述了那些像素不应该被使用在第一层,因为图像具有很强的空间相关性,而使用图像中独立的像素作为不同的输入特征则利用不到这些相关性。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

卷积神经网络技术

卷积神经网路(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网路由一个或多个卷积层和顶端的全连通层(对应经典的神经网路)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网路能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网路在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网路,卷积神经网路需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。 卷积网络是一种专门用于处理具有已知的、网格状拓扑的数据的神经网络。例如时间序列数据,它可以被认为是以一定时间间隔采样的一维网格,又如图像数据,其可以被认为是二维像素网格。

推荐文章
暂无评论
暂无评论~