参与王淑婷 李泽南

从文本处理到自动驾驶:机器学习最常用的50大免费数据集

机器学习领域里有哪些开放数据集?Gengo 近日发布了一份高质量免费数据集列表,其搜索范围不仅包含内容广泛(如 Kaggle),也包括高度特化的(如自动驾驶汽车专用数据集)数据集种类。

首先,在选择数据集时要记住几个重要标准:

  • 数据集不能是混乱的,因为你不希望花费大量时间整理数据。

  • 数据集不应该有过多的行或者列,这样才能容易处理。

  • 数据越干净越好——清理大型数据集可能会非常耗时。

  • 该数据集可以用于回答一些有趣的问题。

这样的话,让我们看看能找到点什么?

查找数据集

Kaggle:一个数据科学竞赛网站,其中包含大量外部贡献的有趣数据集。你可以在它长长的列表中(https://www.kaggle.com/datasets)找到各种小众数据集,从拉面的评分、篮球数据,到西雅图的宠物牌照。

UCI Machine Learning Repository:它是网络中最古老的数据集源之一,是寻找各种有趣数据集的第一选择。在这里,尽管数据集都是用户自行贡献的,但清洁程度仍然很高。此外,你可以直接从 UCI Machine Learning Repository 上下载数据,无需注册。

通用数据集

公共政府数据集Data.gov:这个网站可以从多个美国政府机构下载数据,从政府预算到学校成绩。不过要注意:其中的大部分数据需要进一步研究。

链接:https://www.data.gov/


Food Environment Atlas:包含有关本地食物选择如何影响美国饮食习惯的数据。

链接:https://catalog.data.gov/dataset/food-environment-atlas-f4a22


School system finances:美国学校系统财务状况调查。

链接:https://catalog.data.gov/dataset/annual-survey-of-school-system-finances


Chronic disease data:美国各地慢性病指标数据。

链接:https://catalog.data.gov/dataset/u-s-chronic-disease-indicators-cdi-e50c9


The US National Center for Education Statistics:美国和世界各地教育机构和教育人口统计数据。

链接:https://nces.ed.gov/


The UK Data Centre:英国最大的社会、经济和人口数据收集。

链接:https://www.ukdataservice.ac.uk/


Data USA:美国公共数据的全面可视化。

链接:http://datausa.io/


金融类

Quandl:很好的财经数据来源——有助于建立预测经济指标或股票价格的模型。

链接:https://www.quandl.com/


World Bank Open Data:涵盖人口统计和世界各地大量经济和发展指标的数据集。

链接:https://data.worldbank.org/


IMF Data:国际货币基金组织公布有关国际金融、债务利率、外汇储备、商品价格和投资的数据。

链接:https://www.imf.org/en/Data


Financial Times Market Data:世界金融市场的最新信息,包括股票价格指数、商品和外汇。

链接:https://markets.ft.com/data/


Google Trends:观察和分析有关互联网搜索活动和世界各地新闻故事趋势的数据。

链接:http://www.google.com/trends?q=google&ctab=0&geo=all&date=all&sort=0


AmericanEconomic Association (AEA):寻找美国宏观经济数据的来源。

链接:https://www.aeaweb.org/resources/data/us-macro-regional


机器学习数据集

图像

Labelme:注释图像的大数据集。

链接:http://labelme.csail.mit.edu/Release3.0/browserTools/php/dataset.php


ImageNet:著名的 ImageNet,由斯坦福大学教授李飞飞等人发起,它是面向新算法的真实图像数据集。根据 WordNet 层次结构来组织,其中层次结构的每个节点都由成百上千个图像来描述。

链接:http://image-net.org/


LSUN:场景理解和许多辅助任务(房间布局估计、显著性预测等)。

链接:http://lsun.cs.princeton.edu/2016/


MS COCO:ImageNet 之外另一个常用的图像数据集,包含通用图像理解和注释。

链接:http://cocodataset.org/


COIL100:100 个不同的物体在 360°旋转中以每个角度成像。

链接:http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php


Visual Genome:非常详细的视觉知识库,配有约 100K 个图像的注释。

链接:http://visualgenome.org/


Google's Open Images:Creative Commons 下的 900 万个图片的网址集合,「已经标注了跨越 6000 多个类别的标签」。

链接:https://research.googleblog.com/2016/09/introducing-open-images-dataset.html


Labelled Faces in the Wild:13000 张贴有标签的人脸图像,用于开发涉及人脸识别的应用。

链接:http://vis-www.cs.umass.edu/lfw/


Stanford Dogs Dataset:包含 20580 个图像和 120 个不同品种的狗类别。

链接:http://vision.stanford.edu/aditya86/ImageNetDogs/


Indoor Scene Recognition:非常具体的数据集,适用于大多数场景识别模型,因为后者在「外部」表现更好。包含 67 个室内类别,总共 15620 个图像。

链接:http://web.mit.edu/torralba/www/indoor.html


情感分析

Multidomain Sentiment analysis dataset:有点旧的一个数据集,以亚马逊的产品评论为特色。

链接:http://www.cs.jhu.edu/~mdredze/datasets/sentiment/


IMDB reviews:用于二进制情感分类的较旧的、相对较小的数据集,具有 25000 个电影评论。

链接:http://ai.stanford.edu/~amaas/data/sentiment/


Stanford Sentiment Treebank:带有情感注释的标准情感数据集。

链接:https://nlp.stanford.edu/sentiment/code.html


Sentiment140:一个流行的数据集,使用 16 万条预先删除表情符号的推文

链接:http://help.sentiment140.com/for-students/


Twitter US Airline Sentiment:2015 年 2 月以来美国航空公司的推特数据,分为正面、负面和中性。

链接:https://www.kaggle.com/crowdflower/twitter-airline-sentiment


自然语言处理

Enron Dataset:Enron 公司高层管理人员的电子邮件数据,整理成文件夹。

链接:https://www.cs.cmu.edu/~./enron/


Amazon Reviews:包含来自亚马逊长达 18 年的约 3500 万条评论。数据包括产品和用户信息、评级和明文审查。

链接:https://snap.stanford.edu/data/web-Amazon.html


Google Books Ngrams:Google 书籍中的词汇集合。

链接:https://aws.amazon.com/cn/datasets/google-books-ngrams/


Blogger Corpus:从 blogger . com 收集的 681288 篇博客文章。每个博客至少包含 200 个常用英语单词。

链接:http://u.cs.biu.ac.il/~koppel/BlogCorpus.htm


Wikipedia Links data:维基百科全文。数据集包含 400 多万篇文章中的近 19 亿字。你可以根据单词、短语或段落本身的一部分进行搜索。

链接:https://code.google.com/p/wiki-links/downloads/list


Gutenberg eBooks List:古腾堡计划电子书注释清单。

链接:http://www.gutenberg.org/wiki/Gutenberg:Offline_Catalogs


Hansards text chunks of Canadian Parliament:加拿大第 36 届国会记录 130 万对文本。

链接:https://www.isi.edu/natural-language/download/hansard/


Jeopardy:机智问答节目 Jeopardy 中存档的 20 多万个问题。

链接:https://www.reddit.com/r/datasets/comments/1uyd0t/200000jeopardyquestionsinajsonfile/


SMS Spam Collection in English:由 5574 条英文短信垃圾邮件组成的数据集

链接:http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/


Yelp Reviews:Yelp 发布的开放数据集包含 500 多万条评论。

链接:https://www.yelp.com/dataset


UCI's Spambase:大型垃圾邮件数据集,可用于垃圾邮件过滤。

链接:https://archive.ics.uci.edu/ml/datasets/Spamb (https://archive.ics.uci.edu/ml/datasets/Spambase)


自动驾驶

Berkeley DeepDrive BDD100k:目前最大的自动驾驶人工智能数据集。包含 100000 多段视频,内容涉及一天中不同时间和天气条件下 1100 多小时的驾驶体验。注释图像来自纽约和旧金山地区。

链接:http://bdd-data.berkeley.edu/


Baidu Apolloscapes:百度 Apollo 计划开放的大规模自动驾驶数据集。它定义了 26 个不同语义项目,如汽车、自行车、行人、建筑物、路灯等。

链接:http://apolloscape.auto/


Comma.ai:7 小时以上的公路行驶体验。详细信息包括车速、加速度、转向角和 GPS 坐标。

链接:https://archive.org/details/comma-dataset


Oxford's Robotic Car:一年内在英国牛津同一条路线重复 100 多次的行驶。数据集捕捉天气、交通和行人的不同组合,以及建筑和道路工程等长期变化。

链接:http://robotcar-dataset.robots.ox.ac.uk/


Cityscape Dataset:记录 50 个不同城市街道场景的大型数据集。

链接:https://www.cityscapes-dataset.com/


CSSAD Dataset:该数据集可用于自主车辆的感知和导航。数据集在发达国家的道路上出现严重偏差。

链接:http://aplicaciones.cimat.mx/Personal/jbhayet/ccsad-dataset


KUL Belgium Traffic Sign Dataset:比利时佛兰德区数以千计截然不同的超过 10000 个的交通标志标注。

链接:http://www.vision.ee.ethz.ch/~timofter/traffic_signs/


MIT AGE Lab:在 AgeLab 收集的 1000 多个小时的多传感器驱动数据集样本。

链接:http://lexfridman.com/carsync/


LISA: Laboratory for Intelligent & Safe Automobiles, UC San Diego Datasets:此数据集包括交通标志、车辆检测、交通灯和轨迹模式。

链接:http://cvrr.ucsd.edu/LISA/datasets.html


如果你知道本文中有哪些漏掉的重要数据集,欢迎留言补充。


原文链接:https://gengo.ai/articles/the-50-best-free-datasets-for-machine-learning/

工程机器学习数据集
7
相关数据
自动驾驶技术技术

从 20 世纪 80 年代首次成功演示以来(Dickmanns & Mysliwetz (1992); Dickmanns & Graefe (1988); Thorpe et al. (1988)),自动驾驶汽车领域已经取得了巨大进展。尽管有了这些进展,但在任意复杂环境中实现完全自动驾驶导航仍被认为还需要数十年的发展。原因有两个:首先,在复杂的动态环境中运行的自动驾驶系统需要人工智能归纳不可预测的情境,从而进行实时推论。第二,信息性决策需要准确的感知,目前大部分已有的计算机视觉系统有一定的错误率,这是自动驾驶导航所无法接受的。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

感知技术

知觉或感知是外界刺激作用于感官时,脑对外界的整体的看法和理解,为我们对外界的感官信息进行组织和解释。在认知科学中,也可看作一组程序,包括获取信息、理解信息、筛选信息、组织信息。与感觉不同,知觉反映的是由对象的各样属性及关系构成的整体。

人脸识别技术

广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。 人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。

知识库技术

知识库是用于知识管理的一种特殊的数据库,以便于有关领域知识的采集、整理以及提取。知识库中的知识源于领域专家,它是求解问题所需领域知识的集合,包括基本事实、规则和其它有关信息。

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

推荐文章
暂无评论
暂无评论~