参与蒋思源 李亚洲

小米开源移动端深度学习框架MACE:可转换TensorFlow模型

6 月 28 日,小米首席架构师,人工智能与云平台副总裁崔宝秋在 2018(第十三届)开源中国开源世界高峰论坛上宣布,正式开源小米移动端深度学习框架 MACE。该框架采用与 Caffe2 类似的描述文件定义模型,因此它能非常便捷地部署移动端应用。

项目地址:https://github.com/XiaoMi/mace

文档地址:https://mace.readthedocs.io/en/latest/

Mobile AI Compute Engine (MACE) 是一个专为移动端异构计算平台优化的神经网络计算框架。目前该框架为 TensorFlow 和 Caffe 模型提供转换工具,并且其它框架定义的模型很快也能得到支持。下图展示了该计算框架的整体结构:

据 Github 项目介绍,小米的 MACE 主要从以下的角度做了专门的优化:

  • 性能:代码经过 NEON 指令,OpenCL 以及 Hexagon HVX 专门优化,并且采用 Winograd 算法来进行卷积操作的加速。此外,还对启动速度进行了专门的优化。

  • 功耗:支持芯片的功耗管理,例如 ARM 的 big.LITTLE 调度,以及高通 Adreno GPU 功耗选项。

  • 系统响应:支持自动拆解长时间的 OpenCL 计算任务,来保证 UI 渲染任务能够做到较好的抢占调度,从而保证系统 UI 的相应和用户体验。

  • 内存占用:通过运用内存依赖分析技术,以及内存复用,减少内存的占用。另外,保持尽量少的外部 依赖,保证代码尺寸精简。

  • 模型加密与保护:模型保护是重要设计目标之一。支持将模型转换成 C++代码,以及关键常量字符混淆,增加逆向的难度。

  • 硬件支持范围:支持高通,联发科,以及松果等系列芯片的 CPU,GPU 与 DSP(目前仅支持 Hexagon) 计算加速。同时支持在具有 POSIX 接口的系统的 CPU 上运行。

模型格式

MACE 定义的定制化模型格式与 Caffe2 的类似,MACE 模型能由 TensorFlow 和 Caffe 输出的模型转化。YAML 文件详细描述了模型部署细节,后文将展示该文件的示例。

模型加载

MACE 模型格式包含两部分:定义模型的计算图和模型参数张量。计算图部分利用 Protocol Buffers 做序列化,而所有的模型参数张量级联在一起成为一个连续字节数组,我们称这个数组为张量数据。在模型图中,张量数据的偏移(offsets)和长度都会被记录下来。

可用以下三种方式加载模型:

  1. 模型计算图和张量数据都通过外部动态地加载(默认从文件系统加载,但用户可以自由选择它们的实现,例如使用压缩或加密)。这种方式提供最灵活的模型部署方式,但是模型安全也是最低的。

  2. 模型计算图和张量数据都转化为 C++代码,并通过执行经编译的代码而加载。这种方式能提供最强的模型防护和最简单的部署。

  3. 将模型计算图转换为 C++代码,并以第二种方式构建,而张量数据将在外部以第一种方式加载。

部署文件示例

部署模型到移动端的第一步就是创建 YAML 文件,该 YAML 文件描述了模型部署的情况,每一个文件都将生成一个静态库(如果指定了多个 ABIs,那么每个都会有一个静态库)。部署文件可以包含一个或多个模型,例如智能相机应用可能包含人脸识别、目标识别和语音识别模型,它们可以在一个部署文件中定义。

以下展示了用于安卓示例应用的部署文件:

# The name of library
library_name: mobilenet
target_abis: [arm64-v8a]
embed_model_data: 1
# The build mode for model(s).
# 'code' stand for transfer model(s) into cpp code, 'proto' for model(s) in protobuf file(s).
build_type: code
linkshared: 0
# One yaml config file can contain multi models' config message.
models:
  mobilenet_v1: # model tag, which will be used in model loading and must be specific.
    platform: tensorflow
    # support local path, http:// and https://
    model_file_path: https://cnbj1.fds.api.xiaomi.com/mace/miai-models/mobilenet-v1/mobilenet-v1-1.0.pb
    model_sha256_checksum: 71b10f540ece33c49a7b51f5d4095fc9bd78ce46ebf0300487b2ee23d71294e6
    subgraphs:
      - input_tensors: input
        input_shapes: 1,224,224,3
        output_tensors: MobilenetV1/Predictions/Reshape_1
        output_shapes: 1,1001
    runtime: cpu+gpu
    limit_opencl_kernel_time: 0
    nnlib_graph_mode: 0
    obfuscate: 0
    winograd: 0
  mobilenet_v2:
    platform: tensorflow
    model_file_path: https://cnbj1.fds.api.xiaomi.com/mace/miai-models/mobilenet-v2/mobilenet-v2-1.0.pb
    model_sha256_checksum: 369f9a5f38f3c15b4311c1c84c032ce868da9f371b5f78c13d3ea3c537389bb4
    subgraphs:
      - input_tensors: input
        input_shapes: 1,224,224,3
        output_tensors: MobilenetV2/Predictions/Reshape_1
        output_shapes: 1,1001
    runtime: cpu+gpu
    limit_opencl_kernel_time: 0
    nnlib_graph_mode: 0
    obfuscate: 0
    winograd: 0
}

模型与性能评测

MACE Model Zoo 包含若干常用模型,不仅包括 MobileNet、SqueezeNet、ResNet-50 和 Inception-v3 等常见的卷积神经网络,同时还有风格迁移等应用。MACE Model Zoo 会对一组手机进行每日构建,最新的性能评测结果可以从项目的持续集成页面获取。 

MACE Model Zoo 地址:https://github.com/XiaoMi/mace-models

工程小米深度学习框架TensorFlowCaffe2
1
相关数据
神经网络技术
Neural Network

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

卷积神经网络技术
Convolutional neural network

卷积神经网路(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网路由一个或多个卷积层和顶端的全连通层(对应经典的神经网路)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网路能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网路在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网路,卷积神经网路需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。 卷积网络是一种专门用于处理具有已知的、网格状拓扑的数据的神经网络。例如时间序列数据,它可以被认为是以一定时间间隔采样的一维网格,又如图像数据,其可以被认为是二维像素网格。

人脸识别技术
Facial recognition

广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。 人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。

参数技术
parameter

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

调度技术
Scheduling

调度在计算机中是分配工作所需资源的方法。资源可以指虚拟的计算资源,如线程、进程或数据流;也可以指硬件资源,如处理器、网络连接或扩展卡。 进行调度工作的程序叫做调度器。调度器通常的实现使得所有计算资源都处于忙碌状态,允许多位用户有效地同时共享系统资源,或达到指定的服务质量。 see planning for more details

语音识别技术
Speech Recognition

自动语音识别是一种将口头语音转换为实时可读文本的技术。自动语音识别也称为语音识别(Speech Recognition)或计算机语音识别(Computer Speech Recognition)。自动语音识别是一个多学科交叉的领域,它与声学、语音学、语言学、数字信号处理理论、信息论、计算机科学等众多学科紧密相连。由于语音信号的多样性和复杂性,目前的语音识别系统只能在一定的限制条件下获得满意的性能,或者说只能应用于某些特定的场合。自动语音识别在人工智能领域占据着极其重要的位置。

张量技术
Tensor

张量是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 维空间内,有 个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。称为该张量的秩或阶(与矩阵的秩和阶均无关系)。 在数学里,张量是一种几何实体,或者说广义上的“数量”。张量概念包括标量、矢量和线性算子。张量可以用坐标系统来表达,记作标量的数组,但它是定义为“不依赖于参照系的选择的”。张量在物理和工程学中很重要。例如在扩散张量成像中,表达器官对于水的在各个方向的微分透性的张量可以用来产生大脑的扫描图。工程上最重要的例子可能就是应力张量和应变张量了,它们都是二阶张量,对于一般线性材料他们之间的关系由一个四阶弹性张量来决定。

TensorFlow技术
TensorFlow

TensorFlow是一个开源软件库,用于各种感知和语言理解任务的机器学习。目前被50个团队用于研究和生产许多Google商业产品,如语音识别、Gmail、Google 相册和搜索,其中许多产品曾使用过其前任软件DistBelief。

思源
思源

机器之心编辑

返回顶部