MIT正式发布编程语言Julia 1.0:Python、R、C++三合一

MIT 开发的 Julia 语言是全球热度上升最快的编程语言之一,下载量超过 200 万次,下载者包括谷歌、Facebook、FAA 和美国能源部等各个部门的开发者。近日,MIT CSAIL 实验室正式发布了 Julia 1.0,该语言期望结合 C 的速度、Matlab 的数学表征、Python 的通用编程与 Shell 的胶水命令行,并构建开源、自由与便捷的编程语言。

  • Julia 语言的官网:https://julialang.org/

  • Julia 语言项目地址:https://github.com/JuliaLang


在过去一年中,研究者利用 Julia 在一台超级计算机上分析天文图像,速度提升了 1000 倍,在 15 分钟内将接近 2 亿个天体进行分类。从技术上来看,这种语言还会长期发展下去。然而,现在是一个里程碑的时刻:在本周于伦敦举办的 Julia 语言年会上,Julia 1.0 正式发布!一起发布的还有 JuliaCon。


Julia 的开发者之一、就职于 MIT 计算机科学与人工智能实验室(CSAIL)的教授 Alan Edelman 表示:「Julia 1.0 的发布证明,该语言已经做好准备,将 Python 和 R 的高效性和易用性与 C++的闪电速度结合在一起,改变技术世界。」


从实际应用来说,Julia 已经用于自动驾驶汽车、机器人和 3D 打印机,此外还广泛应用于精准医疗、增强现实、基因组学及风险管理。从 Julia 的生态系统来说,目前它主要的特征或应用领域为数据可视化、一般性的 UI 与网站、数据科学、机器学习、科学计算与平行计算等。



Julia 目前下载量已经达到了 200 万次,且 Julia 社区开发了超过 1900 多个扩展包。这些扩展包包含各种各样的数学库、数学运算工具和用于通用计算的库。除此之外,Julia 语言还可以轻松使用 Python、R、C/C++ 和 Java 中的库,这极大地扩展了 Julia 语言的使用范围。


Julia 1.0


备受期待的 Julia1.0 累积了开发者近十年的努力。JuliaCon2018 举行了发布会,该社区正式将该版本设置为 1.0.0.。


Julia 开发者对该语言提出了很多需求:


我们想要一种十分自由的开源语言,同时兼具 C 语言的速度和 Ruby 语言的灵活度。我们想要一种同像性语言,具有像 Lisp 一样真正的宏,也有像 Maltlab 一样浅显易懂的数学符号。它是像 Python 一样有用的通用编程语言,像 R 语言一样便于统计的语言,像 Perl 一样自然的字符串处理语言,像 Matlab 一样强大的线性代数语言,也是像 shell 一样的「胶水语言」。它简单易学,却能让严苛的黑客们为之倾心。我们希望它兼具交互性和可编译性。


围绕这一语言,一个欣欣向荣的社区已经蓬勃发展起来,为了同一目标,世界各地的人们不断地重塑并改进着 Julia。超过 700 人对 Julia 做出了实质性贡献,更有不计其数的人制造了数千个惊人的 Julia 开源包。总之,我们构建了一种这样的语言:


  • 快速:Julia 为高性能而生。Julia 程序通过 LLVM 为多个平台编译高效的本地代码。

  • 通用:它使用多分派作为范例,使得表达许多面向对象和函数式的编程模式变得容易。标准库提供异步 I/O、进程控制、日志记录、性能分析、包管理器等。

  • 动态:Julia 是动态型语言,与脚本语言类似,并且支持交互式使用。

  • 专业:它擅长数值计算,其语法适用于数学,支持多种数值数据类型,并具有良好并行性。Julia 的多分派天生适合定义数字和类数组的数据类型。

  • 多样:Julia 拥有丰富的描述性数据类型,类型声明使程序条理清晰且稳定。

  • 可组合:Julia 的包可以很好地组合在一起。单位数量的矩阵,或者货币和颜色的数据列表,都可以组合——而且性能很好。


现在 Julia 1.0 版本已经可以下载了。如果你从 Julia 0.6 或更早的版本升级代码,我们建议你首先使用过渡版本 0.7,它包含了弃用警告,可以帮助引导升级过程。如果你的代码没有警告,那么你就可以直接变更到 1.0 版本而不会产生任何功能性的改变。已注册软件包正利用 0.7 这个过渡版本,并发布了 1.0 的兼容更新。


当然,Julia 1.0 中最重要的一个新特征是对语言 API 稳定性的承诺:为 Julia 1.0 编写的代码可以继续在 Julia 1.1、1.2 等版本上使用。该语言是「完全成熟的」,核心语言开发者和社区都可以基于这个坚实的基础构建新的包、工具和特征。


Julia 1.0 不仅涉及稳定性,还引入了多种新的强大、创新性语言功能。自 0.6 版本以来的新功能如下,更多详细与准确的内容请查看更新文档原文:


  • 一种全新的内置程序包管理器给 Julia 1.0 带来巨大的性能提升,并令其相比以往更容易进行程序包和依赖库安装。它还支持每项目(per-project)的包环境,并记录工作应用的明确状态来和其他人(以及你的未来项目)共享。最后,该新设计还完全支持私人包和软件包存储库。你可以使用相同的工具安装和管理你用于开源包生态系统的私人包。JuliaCon 的展示视频对新设计和行为提供了很好的概述。

  • Julia 拥有对缺失值的新的标准表示。允许表示和处理缺失数据对于统计和数据科学来说是很基础的。在典型的 Julia 编程形式中,新的解决方案是通用的、可组合的和高性能的。任何泛用群集类型可以高效地支持缺失值,仅需要允许元素包含预定义值 missing。这种「统一类型化」的群集的性能在过去版本中可能会非常慢,但如今的编译器改进已经允许 Julia 在其它系统中匹配自定义 C 或 C++的缺失值表示的速度,同时在通用性和灵活性上也远远超越过去的版本。

  • 内置的 String 类型现在可以安全地支持任意数据。你的程序不会在一项工作中因为无效 Unicode 的单个丢失字节就浪费数小时或数天的时间。所有的字符串数据在指示哪些字符是有效或无效的同时就已经被保存,允许你的应用安全、方便地处理包含所有不可避免瑕疵的真实世界数据。

  • 广播(broadcasting)由于方便的语法特性已经成为了一种核心的语言功能,并且已经比过去更加强大。在 Julia 1.0 中,可以很简单地将广播扩展到自定义类型,并在 GPU 和其它向量化硬件上实现高效的优化计算,为未来更高的性能效益奠定了基础。

  • 命名元数组是一种新的语言功能,可以通过命名使数据表示和访问更加高效和方便。例如,你可以将一行数据表示为 row = (name="Julia", version=v"1.0.0", releases=8),并使用 row.version 来访问 version 列,它与不那么便利的 row [2] 有相同的性能。

  • 点运算符现在可以重载,并允许类型使用 obj.property 句法获取除 getting 和 setting 结构域外的含义。这对于使用 Python 和 Java 等面向对象语言之间更加平滑的交互操作非常有用。属性访问器重载还允许获取一列数据的语法匹配命名元组的语法:你可以编写 table.version 以访问表中的 version 列,这就和使用 row.version 访问行的 version 字段一样。

  • Julia 优化器在很多方面比我们列出来的特征还要优秀,但这里只会提一些亮点。优化器现在可以通过函数调用传播常数,因此比以前能更好地消除无用代码和实现静态评估。编译器在避免为长期目标分配短期包装器方面也做得更好,这使得开发者能使用便捷的高级抽象并且不会产生性能损失。

  • 现在可以用声明参数类型的构造函数的方式调用它们自己,这消除了语言句法中令人困惑且模糊的地方。

  • 完全重新设计迭代协议,使之更易实现多种可迭代量。Julia 1.0 没有设计三种不同泛型函数(start、next、done)的方法,而是设计 iterate 函数的一参数和二参数方法。这通常允许在开始状态使用包含默认值的单一定义来便捷地定义迭代。更重要的是,这使得实现只在尝试并无法生成值后才知道它们已经被实施过的迭代器成为可能。这些迭代器在输入/输出(I/O)、网络和生产者/消费者模式中是非常普遍的,Julia 可以用一种直接、准确的方式表达这些迭代器。

  • 作用域规则(scope rule)被简化。局部作用域的结构现在可以一致地进行使用,不用管某命名的全局约束是否已经存在。

  • Julia 语言本身是非常好的学习器,很多组件被分割封装进 Julia 的「标准库」包,而不是作为「基础」语言的一部分。如果你需要它们,可以导入它们(无需安装)。未来,标准库还将出现多种版本,并独立于 Julia 更新,这使得它们可以更快地迭代。

  • 我们已经对 Julia 的所有 API 进行了完全的评议,以改善稳定性和可用性。对很多模糊的已有命名和无效的编程模式进行了重命名或重构,使之更匹配 Julia 的能力。这使得处理集合更加稳定和一致,以确保参数顺序遵循 Julia 语言中一贯的标准,并在恰当的情况下将(更快的)关键词参数整合进 API。


现在围绕 Julia 1.0 的新功能专门构建了许多新的外部软件包,如数据处理和操作生态系统的改进和异构架构支持的改进等。


Julia 1.0 还包括了无数其它的改进,如果想查看完整的列表,请访问:https://docs.julialang.org/en/release-0.7/NEWS/ 

工程语言
6
相关数据
增强现实技术
Augmented reality

增强现实,是指透过摄影机影像的位置及角度精算并加上图像分析技术,让屏幕上的虚拟世界能够与现实世界场景进行结合与互动的技术。这种技术于1990年提出。随着随身电子产品运算能力的提升,增强现实的用途也越来越广。

机器学习技术
Machine Learning

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

优化器技术
Optimizer

优化器基类提供了计算梯度loss的方法,并可以将梯度应用于变量。优化器里包含了实现了经典的优化算法,如梯度下降和Adagrad。 优化器是提供了一个可以使用各种优化算法的接口,可以让用户直接调用一些经典的优化算法,如梯度下降法等等。优化器(optimizers)类的基类。这个类定义了在训练模型的时候添加一个操作的API。用户基本上不会直接使用这个类,但是你会用到他的子类比如GradientDescentOptimizer, AdagradOptimizer, MomentumOptimizer(tensorflow下的优化器包)等等这些算法。

参数技术
parameter

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

自动驾驶技术
self-driving

从 20 世纪 80 年代首次成功演示以来(Dickmanns & Mysliwetz (1992); Dickmanns & Graefe (1988); Thorpe et al. (1988)),自动驾驶汽车领域已经取得了巨大进展。尽管有了这些进展,但在任意复杂环境中实现完全自动驾驶导航仍被认为还需要数十年的发展。原因有两个:首先,在复杂的动态环境中运行的自动驾驶系统需要人工智能归纳不可预测的情境,从而进行实时推论。第二,信息性决策需要准确的感知,目前大部分已有的计算机视觉系统有一定的错误率,这是自动驾驶导航所无法接受的。

重构技术
Refactoring

代码重构(英语:Code refactoring)指对软件代码做任何更动以增加可读性或者简化结构而不影响输出结果。 软件重构需要借助工具完成,重构工具能够修改代码同时修改所有引用该代码的地方。在极限编程的方法学中,重构需要单元测试来支持。

机器之心
机器之心

机器之心编辑

推荐文章
返回顶部