Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

中科大联合华为诺亚提出Entropy Law,揭秘大模型性能、数据压缩率以及训练损失关系

图片
AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com

本工作由中科大认知智能全国重点实验室 IEEE Fellow 陈恩红团队与华为诺亚方舟实验室完成。陈恩红教授团队深耕数据挖掘机器学习领域,在顶级期刊与会议上发表多篇论文,谷歌学术论文引用超两万次。诺亚方舟实验室是华为公司从事人工智能基础研究的实验室,秉持理论研究与应用创新并重的理念,致力于推动人工智能领域的技术创新和发展。

数据是大语言模型(LLMs)成功的基石,但并非所有数据都有益于模型学习。直觉上,高质量的样本在教授 LLM 上预期会有更好的效率。因此,现有方法通常专注于基于质量的数据选择。然而,这些方法中的大多数独立地评估不同的数据样本,忽略了样本之间复杂的组合效应。如图 1 所示,即使每个样本质量完美,由于它们的互信息冗余或不一致性,它们的组合可能仍然次优。尽管基于质量的子集由所有三个优质样本组成,但它们编码的知识实际上是冗余和冲突的。相比之下,另一个由几个相对较低质量但多样化的样本组成的数据子集在教授 LLM 方面可能传达更多信息。因此,基于质量的数据选择并未完全符合最大化 LLM 知识掌握的目标。

而本文旨在揭示 LLM 性能与数据选择之间的内在关系。受 LLM 信息压缩本质的启发,我们发现了一条 entropy law,它将 LLM 性能与数据压缩率和前几步模型训练的损失加以联系,分别反映了数据集的信息冗余程度和 LLM 对数据集中固有知识的掌握程度。通过理论推导和实证评估,我们发现模型性能与训练数据的压缩率呈负相关,而这通常会产生较低的训练损失。基于 entropy law 的发现,我们提出了一种非常高效且通用的数据选择方法用于训练 LLM,名为 ZIP,其旨在优先选择低压缩率的数据子集。ZIP 分多阶段、贪心地选择多样化的数据,最终获得一个具有良好多样性的数据子集。

图片

  • 团队:中科大认知智能全国重点实验室陈恩红团队,华为诺亚方舟实验室
  • 论文链接: https://arxiv.org/pdf/2407.06645
  • 代码链接: https://github.com/USTC-StarTeam/ZIP

图片

                                 图 1
Entropy law

我们对数据压缩与 LLM 性能之间的关系进行理论分析。直觉上,训练数据的正确性和多样性会影响最终模型的性能。同时,如果数据存在严重的内在冲突或模型对数据编码的信息掌握不佳,LLM 的性能可能会次优。基于这些假设,我们将 LLM 的性能表示为 Z ,其预期会受到以下因素的影响:

  • 数据压缩率 R:直觉上,压缩率越低的数据集表明信息密度越高。
  • 训练损失 L:表示数据对模型来说是否难以记忆。在相同的基础模型下,高训练损失通常是由于数据集中存在噪声或不一致的信息。
  • 数据一致性 C:数据的一致性通过给定前文情况下下一个 token 的概率的熵来反映。更高的数据一致性通常会带来更低的训练损失。
  • 平均数据质量 Q:反映了数据的平均样本级质量,可以通过各种客观和主观方面来衡量。

给定一定量的训练数据,模型性能可以通过上述因素来估计:

图片

其中 f 是一个隐函数。给定一个特定的基础模型,L 的规模通常取决于 R 和 C,可以表示为:

图片

由于具有更高同质性或更好数据一致性的数据集更容易被模型学习,L 预计在 R 和 C 上是单调的。因此,我们可以将上述公式重写为:

图片

其中 g' 是一个反函数。通过结合上述三个方程,我们得到:

图片

其中 h 是另一个隐函数。如果数据选择方法不会显著改变平均数据质量 Q,我们可以近似地将变量 Q 视为常数。因此,最终性能可以粗略地表示为:图片
这意味着模型性能与数据压缩率和训练损失相关。我们将这种关系称为 Entropy law

基于 Entropy law,我们提出两个推论:

  • 如果将 C 视为常数,训练损失直接受压缩率影响。因此,模型性能由压缩率控制:如果数据压缩率 R 较高,那么 Z 通常较差,这将在我们的实验中得到验证。
  • 在相同的压缩率下,较高训练损失意味着较低的数据一致性。因此,模型学到的有效知识可能更有限。这可以用来预测 LLM 在具有相似压缩率和样本质量的不同数据上的性能。我们将在后续展示这一推论在实践中的应用。

ZIP:高度轻量化的数据选择算法

在 entropy law 的指导下,我们提出了 ZIP 这一数据选择方法,通过数据压缩率来选择数据样本,旨在在有限的训练数据预算下最大化有效信息量。出于效率考量,我们采用了一种迭代多阶段贪心范式,以高效地获得具有相对低压缩率的近似解。在每轮迭代中,我们首先使用全局选择阶段来选择一组具有低压缩率的候选样本池,找到信息密度高的样本。然后,我们采用粗粒度的局部选择阶段,选择一组与已选样本冗余度最低的较小样本集。最后,我们使用细粒度的局部选择阶段,最小化要添加样本之间的相似性。上述过程持续进行直到获得足够的数据,具体算法如下:

图片

实验结果

1.ZIP 选择算法对于不同 LLM、在不同 LLM 对齐阶段的有效性

对比不同的 SFT 数据选择算法,基于 ZIP 选择数据所训练得到的模型性能上展现出优势,并且在效率上也占优。具体结果见下表:

图片

得益于 ZIP 的模型无关、内容无感知的特性,其同样也可应用于偏好对齐阶段的数据选择。而 ZIP 所选择的数据同样展现出了较大的优势。具体结果见下表:

图片

2.Entropy law 的实验验证

基于 SFT 数据选择实验,我们基于模型效果、数据压缩率以及模型在前几步训练的损失,分别拟合了多条关系曲线。结果见图 2 以及图 3,我们从图中可以观察到三个因素之间的紧密关联。首先,低压缩率数据通常会带来更好的模型效果,这是因为 LLMs 的学习过程与信息压缩高度相关,我们可以将 LLM 视为数据压缩器,那么压缩率较低的数据意味着更多的知识量,从而对压缩器更有价值。同时,可以观察到较低的压缩率通常伴随着更高的训练损失,这是因为难以压缩的数据携带了更多的知识,对 LLM 吸收其中蕴含的知识提出了更大的挑战。

图片

                               图 2 Mistral-7B

图片

                              图 3 Llama-3-8B

3.Entropy law 的实际应用

我们提供了一个 entropy law 在真实场景中指导 LLM 训练数据增量更新的应用。在该任务场景中,训练数据量保持相对稳定,只有一小部分数据会被修改。结果见图 4,其中图片图片是逐渐增量更新的 5 个数据版本,出于保密要求,仅提供不同压缩率下模型效果的相对关系。根据 entropy law 预测,假设每次增量更新后数据质量没有显著下降,可以预期随着数据压缩率的降低,模型性能会有所提升。这一预测与图中数据版本图片图片的结果一致。然而,数据版本图片显示出损失和数据压缩率的异常增加,这预示了由于训练数据一致性下降导致的模型性能下降的潜在可能。这一预测通过随后的模型性能评估进一步得到证实。因此,entropy law 可以作为 LLM 训练的指导原则,无需在完整数据集上训练模型直到收敛,便可预测 LLM 训练失败的潜在风险。鉴于训练 LLM 的高昂成本,这一点尤其重要。

图片

                                   图 4
工程Entropy law
相关数据
华为机构

华为创立于1987年,是全球领先的ICT(信息与通信)基础设施和智能终端提供商。

https://www.huawei.com/cn/
机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

感知技术

知觉或感知是外界刺激作用于感官时,脑对外界的整体的看法和理解,为我们对外界的感官信息进行组织和解释。在认知科学中,也可看作一组程序,包括获取信息、理解信息、筛选信息、组织信息。与感觉不同,知觉反映的是由对象的各样属性及关系构成的整体。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

收敛技术

在数学,计算机科学和逻辑学中,收敛指的是不同的变换序列在有限的时间内达到一个结论(变换终止),并且得出的结论是独立于达到它的路径(他们是融合的)。 通俗来说,收敛通常是指在训练期间达到的一种状态,即经过一定次数的迭代之后,训练损失和验证损失在每次迭代中的变化都非常小或根本没有变化。也就是说,如果采用当前数据进行额外的训练将无法改进模型,模型即达到收敛状态。在深度学习中,损失值有时会在最终下降之前的多次迭代中保持不变或几乎保持不变,暂时形成收敛的假象。

数据压缩技术

数据压缩是指在不丢失有用信息的前提下,缩减数据量以减少存储空间,提高其传输、存储和处理效率,或按照一定的算法对数据进行重新组织,减少数据的冗余和存储的空间的一种技术方法。数据压缩包括有损压缩和无损压缩。在计算机科学和信息论中,数据压缩或者源编码是按照特定的编码机制用比未经编码少的数据位元(或者其它信息相关的单位)表示信息的过程。

数据挖掘技术

数据挖掘(英语:data mining)是一个跨学科的计算机科学分支 它是用人工智能、机器学习、统计学和数据库的交叉方法在相對較大型的数据集中发现模式的计算过程。 数据挖掘过程的总体目标是从一个数据集中提取信息,并将其转换成可理解的结构,以进一步使用。

机器之心机构

机器之心,成立于2014年,是国内最具影响力、最专业、唯一用于国际品牌的人工智能信息服务与产业服务平台。目前机器之心已经建立起涵盖媒体、数据、活动、研究及咨询、线下物理空间于一体的业务体系,为各类人工智能从业者提供综合信息服务和产业服务。

https://www.jiqizhixin.com/
语言模型技术

统计式的语言模型是借由一个几率分布,而指派几率给字词所组成的字串。语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。

量化技术

深度学习中的量化是指,用低位宽数字的神经网络近似使用了浮点数的神经网络的过程。

推荐文章
暂无评论
暂无评论~