Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

ICLR 2024 | 联邦学习后门攻击的模型关键层

联邦学习使多个参与方可以在数据隐私得到保护的情况下训练机器学习模型。但是由于服务器无法监控参与者在本地进行的训练过程,参与者可以篡改本地训练模型,从而对联邦学习的全局模型构成安全序隐患,如后门攻击。

本文重点关注如何在有防御保护的训练框架下,对联邦学习发起后门攻击。本文发现后门攻击的植入与部分神经网络层的相关性更高,并将这些层称为后门攻击关键层。

基于后门关键层的发现,本文提出通过攻击后门关键层绕过防御算法检测,从而可以控制少量的参与者进行高效的后门攻击。

图片

论文题目:Backdoor Federated Learning By Poisoning Backdoor-Critical Layers

论文链接:https://openreview.net/pdf?id=AJBGSVSTT2

代码链接:https://github.com/zhmzm/Poisoning_Backdoor-critical_Layers_Attack

方法

图片

本文提出层替换方法识别后门关键层。具体方法如下:

  • 第一步,先将模型在干净数据集上训练至收敛,并保存模型参数记为良性模型图片。再将良性模型的复制在含有后门的数据集上训练,收敛后保存模型参数并记为恶意模型图片

  • 第二步,取良性模型中一层参数替换到包含后门的恶意模型中,并计算所得到的模型的后门攻击成功率图片。将得到的后门攻击成功率与恶意模型的后门攻击成功率 BSR 做差得到 △BSR,可得到该层对后门攻击的影响程度。对神经网络中每一层使用相同的方法,可得到一个记录所有层对后门攻击影响程度的列表。

  • 第三步,对所有层按照对后门攻击的影响程度进行排序。将列表中影响程度最大的一层取出并加入后门攻击关键层集合 图片,并将恶意模型中的后门攻击关键层(在集合 图片 中的层)参数植入良性模型。计算所得到模型的后门攻击成功率图片。如果后门攻击成功率大于所设阈值 τ 乘以恶意模型后门攻击成功率图片,则停止算法。若不满足,则继续将列表所剩层中最大的一层加入后门攻击关键层图片直到满足条件。

在得到后门攻击关键层的集合之后,本文提出通过攻击后门关键层的方法来绕过防御方法的检测。除此之外,本文引入模拟聚合和良性模型中心进一步减小与其他良性模型的距离。

实验结果

本文对多个防御方法在 CIFAR-10 和 MNIST 数据集上验证了基于后门关键层攻击的有效性。实验将分别使用后门攻击成功率 BSR 和恶意模型接收率 MAR(良性模型接收率 BAR)作为衡量攻击有效性的指标。

首先,基于层的攻击 LP Attack 可以让恶意客户端获得很高的选取率。如下表所示,LP Attack 在 CIFAR-10 数据集上得到了 90% 的接收率,远高于良性用户的 34%。

图片

然后,LP Attack 可以取得很高的后门攻击成功率,即使在只有 10% 恶意客户端的设定下。如下表所示,LP Attack 在不同的数据集和不同的防御方法保护下,均能取得很高的后门攻击成功率 BSR。

图片

在消融实验中,本文分别对后门关键层和非后门关键层进行投毒并测量两种实验的后门攻击成功率。如下图所示,攻击相同层数的情况下,对非后门关键层进行投毒的成功率远低于对后门关键层进行投毒,这表明本文的算法可以选择出有效的后门攻击关键层。

图片

除此之外,我们对模型聚合模块 Model Averaging 和自适应控制模块 Adaptive Control 进行消融实验。如下表所示,这两个模块均对提升选取率和后门攻击成功率,证明了这两个模块的有效性。

图片

总结

本文发现后门攻击与部分层紧密相关,并提出了一种算法搜寻后门攻击关键层。本文利用后门攻击关键层提出了针对联邦学习中保护算法的基于层的 layer-wise 攻击。所提出的攻击揭示了目前三类防御方法的漏洞,表明未来将需要更加精细的防御算法对联邦学习安全进行保护。

作者介绍

Zhuang Haomin,本科毕业于华南理工大学,曾于路易斯安那州立大学 IntelliSys 实验室担任研究助理,现于圣母大学就读博士。主要研究方向为后门攻击和对抗样本攻击。

工程ICLR 2024华南理工大学
相关数据
机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

收敛技术

在数学,计算机科学和逻辑学中,收敛指的是不同的变换序列在有限的时间内达到一个结论(变换终止),并且得出的结论是独立于达到它的路径(他们是融合的)。 通俗来说,收敛通常是指在训练期间达到的一种状态,即经过一定次数的迭代之后,训练损失和验证损失在每次迭代中的变化都非常小或根本没有变化。也就是说,如果采用当前数据进行额外的训练将无法改进模型,模型即达到收敛状态。在深度学习中,损失值有时会在最终下降之前的多次迭代中保持不变或几乎保持不变,暂时形成收敛的假象。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

对抗样本技术

对抗样本是一类被设计来混淆机器学习器的样本,它们看上去与真实样本的几乎相同(无法用肉眼分辨),但其中噪声的加入却会导致机器学习模型做出错误的分类判断。

联邦学习技术

如何在保护数据隐私、满足合法合规要求的前提下继续进行机器学习,这部分研究被称为「联邦学习」(Federated Learning)。

推荐文章
暂无评论
暂无评论~