Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

「AI透视眼」,三次马尔奖获得者Andrew带队解决任意物体遮挡补全难题

遮挡是计算机视觉很基础但依旧未解决的问题之一,因为遮挡意味着视觉信息的缺失,而机器视觉系统却依靠着视觉信息进行感知和理解,并且在现实世界中,物体之间的相互遮挡无处不在。牛津大学 VGG 实验室 Andrew Zisserman 团队最新工作系统性解决了任意物体的遮挡补全问题,并且为这一问题提出了一个新的更加精确的评估数据集。该工作受到了 MPI 大佬 Michael Black、CVPR 官方账号、南加州大学计算机系官方账号等在 X 平台的点赞。以下为论文「Amodal Ground Truth and Completion in the Wild」的主要内容。

图片
  • 论文链接:https://arxiv.org/pdf/2312.17247.pdf

  • 项目主页:https://www.robots.ox.ac.uk/~vgg/research/amodal/

  • 代码地址:https://github.com/Championchess/Amodal-Completion-in-the-Wild

非模态分割(Amodal Segmentation)旨在补全物体被遮挡的部分,即给出物体可见部分和不可见部分的形状掩码。这个任务可以使得诸多下游任务受益:物体识别目标检测实例分割、图像编辑、三维重建、视频物体分割、物体间支撑关系推理、机器人的操纵和导航,因为在这些任务中知道被遮挡物体完整的形状会有所帮助。

图片

然而,如何去评估一个模型在真实世界做非模态分割的性能却是一个难题:虽然很多图片中都有大量的被遮挡物体,可是如何得到这些物体完整形状的参考标准 或是非模态掩码呢?前人的工作有通过人手动标注非模态掩码的,可是这样标注的参考标准难以避免引入人类误差;也有工作通过制造合成数据集,比如在一个完整的物体上贴直接另一个物体,来得到被遮挡物体的完整形状,但这样得到的图片都不是真实图片场景。因此,这个工作提出了通过 3D 模型投影的方法,构造了一个大规模的涵盖多物体种类并且提供非模态掩码的真实图片数据集(MP3D-Amodal)来精确评估非模态分割的性能。各不同数据集的对比如下图:

图片

具体而言,以 MatterPort3D 数据集为例,对于任意的有真实照片并且有场景三维结构的数据集,我们可以将场景中所有物体的三维形状同时投影到相机上以得到每个物体的模态掩码(可见形状,因为物体相互之间有遮挡),然后将场景中每个物体的三维形状分别投影到相机以得到这个物体的非模态掩码,即完整的形状。通过对比模态掩码和非模态掩码,即可以挑选出被遮挡的物体。

图片

数据集的统计数据如下:

图片
图片

数据集的样例如下:

图片

此外,为解决任意物体的完整形状重建任务,作者提取出 Stable Diffusion 模型的特征中关于物体完整形状的先验知识,来对任意被遮挡物体做非模态分割,具体的架构如下(SDAmodal):

图片

提出使用 Stable Diffusion Feature 的动机在于,Stable Diffusion 具有图片补全的能力,所以可能一定程度上包含了有关物体的全部信息;而且由于 Stable Diffusion 经过大量图片的训练,所以可以期待其特征在任意环境下有对任意物体的处理能力。和前人 two-stage 的框架不同,SDAmodal 不需要已经标注好的遮挡物掩码作为输入;SDAmodal 架构简单,却体现出很强的零样本泛化能力(比较下表 Setting F 和 H,仅在 COCOA 上训练,却能在另一个不同域、不同类别的数据集上有所提升);即使没有关于遮挡物的标注,SDAmodal 在目前已有的涵盖多种类被遮挡物体的数据集 COCOA 以及新提出的 MP3D-Amodal 数据集上,都取得了SOTA表现(Setting H)。

图片

除了定量实验,定性的比较也体现出了 SDAmodal 模型的优势:从下图可以观察到(所有模型都只在 COCOA 上训练),对于不同种类的被遮挡物体,无论是来自于 COCOA,还是来自于另一个MP3D-Amodal,SDAmodal 都能大大提升非模态分割的效果,所预测的非模态掩码更加接近真实的。

图片

更多细节,请阅读论文原文。

工程非模态分割计算机视觉
相关数据
感知技术

知觉或感知是外界刺激作用于感官时,脑对外界的整体的看法和理解,为我们对外界的感官信息进行组织和解释。在认知科学中,也可看作一组程序,包括获取信息、理解信息、筛选信息、组织信息。与感觉不同,知觉反映的是由对象的各样属性及关系构成的整体。

VGG技术

2014年,牛津大学提出了另一种深度卷积网络VGG-Net,它相比于AlexNet有更小的卷积核和更深的层级。AlexNet前面几层用了11×11和5×5的卷积核以在图像上获取更大的感受野,而VGG采用更小的卷积核与更深的网络提升参数效率。VGG-Net 的泛化性能较好,常用于图像特征的抽取目标检测候选框生成等。VGG最大的问题就在于参数数量,VGG-19基本上是参数量最多的卷积网络架构。VGG-Net的参数主要出现在后面两个全连接层,每一层都有4096个神经元,可想而至这之间的参数会有多么庞大。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

先验知识技术

先验(apriori ;也译作 先天)在拉丁文中指“来自先前的东西”,或稍稍引申指“在经验之前”。近代西方传统中,认为先验指无需经验或先于经验获得的知识。先验知识不依赖于经验,比如,数学式子2+2=4;恒真命题“所有的单身汉一定没有结婚”;以及来自纯粹理性的推断“本体论证明”

物体识别技术

计算机视觉领域的一个分支,研究物体的识别任务

实例分割技术

实例分割是检测和描绘出现在图像中的每个不同目标物体的任务。

目标检测技术

一般目标检测(generic object detection)的目标是根据大量预定义的类别在自然图像中确定目标实例的位置,这是计算机视觉领域最基本和最有挑战性的问题之一。近些年兴起的深度学习技术是一种可从数据中直接学习特征表示的强大方法,并已经为一般目标检测领域带来了显著的突破性进展。

三维重建技术

三维重建是指利用二维投影或影像恢复物体三维信息(形状等)的数学过程和计算机技术。

机器视觉技术

机器视觉(Machine Vision,MV)是一种为自动化检测、过程控制和机器人导航等应用提供基于图像的自动检测和分析的技术和方法,通常用于工业领域。

推荐文章
暂无评论
暂无评论~