Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

基于神经网络的偏微分方程求解器新突破:北大&字节研究成果入选Nature子刊

近年来,基于神经网络的偏微分方程求解器在各领域均得到了广泛关注。其中,量子变分蒙特卡洛方法(NNVMC)在量子化学领域异军突起,对于一系列问题的解决展现出超越传统方法的精确度 [1, 2, 3, 4]。北京大学字节跳动研究部门 ByteDance Research 联合开发的计算框架 Forward Laplacian 创新地利用 Laplace 算子前向传播计算,为 NNVMC 领域提供了十倍的加速,从而大幅降低计算成本,达成该领域多项 State of the Art,同时也助力该领域向更多的科学难题发起冲击。该工作以《A computational framework for neural network-based variational Monte Carlo with Forward Laplacian》为题的论文已发表于国际顶级期刊《Nature Machine Intelligence》,相关代码已开源。

图片

  • 论文链接:https://www.nature.com/articles/s42256-024-00794-x

  • 代码地址:

  • https://github.com/bytedance/LapNet

  • https://github.com/YWolfeee/lapjax

该项工作一提出即受到相关研究人员的密切关注,围绕该工作已有多个开源项目实现,编程框架 JAX 也计划将该项工作吸收其中。

该项工作由北京大学智能学院王立威课题组、物理学院陈基课题组联合字节跳动研究部门 ByteDance Research 一同开发完成,作者中有多位北京大学博士生在 ByteDance Research 实习。

背景简介

基于神经网络的量子变分蒙特卡洛方法(NNVMC)已成为量子化学 - 从头计算领域中一项前沿技术。它具备精度高、适用范围广等优点。但它的阿克琉斯之踵在于过高的计算成本,这也限制了该方法在实际化学问题中的应用。

作者提出了一套全新的计算框架 "Forward Laplacian",利用 Laplace 算子的前向传播,显著提升了 NNVMC 方法的计算效率,为人工智能在微观量子问题中的应用打开了新的大门。

方法介绍

Forward Laplacian 框架

在 NNVMC 方法中,神经网络目标函数是微观体系的能量,包括动能与势能两项。其中动能项涉及对神经网络的拉普拉斯算子的计算,这也是 NNVMC 中耗时最长的计算瓶颈。现有的自动微分框架在计算拉普拉斯算子时,需要先计算黑塞矩阵,再求得拉普拉斯项(即黑塞矩阵的迹)。而作者所提出的计算框架 "Forward Laplacian" 则通过一次前向传播直接求得拉普拉斯项,避免了黑塞矩阵的计算,从而削减了整体计算的规模,实现了显著加速。

图片

LapNet 网络

除了有效削减计算图规模之外,Forward Laplacian 框架的另一大特点是能有效利用神经网络梯度计算中的稀疏性,提出神经网络结构 LapNet。LapNet 通过增加神经网络中的稀疏性,在精度无损的同时,显著提升了网络计算的效率。

图片

计算结果

绝对能量

作者首先就方法的效率及精度同当前 NNVMC 领域有代表性的几项工作进行了比较。从绝对能量的计算结果而言,作者提出的 LapNet 在 Forward Laplacian 框架下的效率高于参考工作数倍,精度上也与 SOTA 保持一致。此外,如果在相同计算资源(即相同 GPU hour)的情况下比较,LapNet 的计算结果可以显著优于之前的 SOTA。

图片

加速标度

为了更明确地研究作者所提出方法相比于之前 SOTA 的加速标度,作者在不同大小的链式聚乙烯体系上进行了测试,结果可以很明显地看到 Forward Laplacian 工作带来的 O (n) 加速。此处 n 为目标分子中的电子数目。

图片

相对能量

在物理、化学研究中,相对能量相较于绝对能量具有更明确的物理意义。作者也在一系列的体系上进行了测试,均取得了理想结果。

图片

总结

为降低基于神经网络的量子变分蒙特卡洛方法(NNVMC)的使用门槛,北京大学字节跳动研究部门 ByteDance Research 联合开发了计算框架 Forward Laplacian,实现了十倍的加速。该工作已受到相关研究人员的广泛关注,期望能够推动 NNVMC 方法在更多科学问题中发挥重要作用。

参考文献

[1] Han, J., Zhang, L., & Weinan, E. (2019). Solving many-electron Schrödinger equation using deep neural networks. Journal of Computational Physics, 399, 108929.

[2] Hermann, J., Schätzle, Z., & Noé, F. (2020). Deep-neural-network solution of the electronic Schrödinger equation. Nature Chemistry, 12 (10), 891-897.

[3] Pfau, D., Spencer, J. S., Matthews, A. G., & Foulkes, W. M. C. (2020). Ab initio solution of the many-electron Schrödinger equation with deep neural networks. Physical Review Research, 2 (3), 033429.

[4] Li, X., Li, Z., & Chen, J. (2022). Ab initio calculation of real solids via neural network ansatz. Nature Communications, 13 (1), 7895.

产业Forward LaplacianNNVMC
相关数据
字节跳动机构

北京字节跳动科技有限公司成立于2012年,是最早将人工智能应用于移动互联网场景的科技企业之一,是中国北京的一家信息科技公司,地址位于北京市海淀区知春路甲48号。其独立研发的“今日头条”客户端,通过海量信息采集、深度数据挖掘和用户行为分析,为用户智能推荐个性化信息,从而开创了一种全新的新闻阅读模式

https://bytedance.com
人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

目标函数技术

目标函数f(x)就是用设计变量来表示的所追求的目标形式,所以目标函数就是设计变量的函数,是一个标量。从工程意义讲,目标函数是系统的性能标准,比如,一个结构的最轻重量、最低造价、最合理形式;一件产品的最短生产时间、最小能量消耗;一个实验的最佳配方等等,建立目标函数的过程就是寻找设计变量与目标的关系的过程,目标函数和设计变量的关系可用曲线、曲面或超曲面表示。

北京大学机构

北京大学创办于1898年,初名京师大学堂,是中国第一所国立综合性大学,也是当时中国最高教育行政机关。辛亥革命后,于1912年改为现名。2000年4月3日,北京大学与原北京医科大学合并,组建了新的北京大学。原北京医科大学的前身是国立北京医学专门学校,创建于1912年10月26日。20世纪三、四十年代,学校一度名为北平大学医学院,并于1946年7月并入北京大学。1952年在全国高校院系调整中,北京大学医学院脱离北京大学,独立为北京医学院。1985年更名为北京医科大学,1996年成为国家首批“211工程”重点支持的医科大学。两校合并进一步拓宽了北京大学的学科结构,为促进医学与人文社会科学及理科的结合,改革医学教育奠定了基础。

官网,http://www.pku.edu.cn/
推荐文章
暂无评论
暂无评论~