Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

Sam Altman7万亿美元芯片计划被怼,“硅仙人”:我只用不到1万亿

机器之能报道

编辑:Sia

不是每个业内人士都买这笔疯狂数字的账。

Sam Altman 最近登上了头条新闻,背后的原因有些夸张。

这位从未设计过一个芯片的聪明人认为半导体行业需要他,正在推动一个旨在提高全球芯片制造能力的项目。为此,他需要筹集 5 万亿至 7 万亿美元,并正与包括阿联酋政府在内的不同投资者进行谈判。

OpenAI 发言人表示,“ OpenAI 就增加芯片、能源和数据中心的全球基础设施和供应链进行了富有成效的讨论,这对于人工智能和相关行业至关重要。鉴于国家优先事项的重要性,我们将继续向美国政府通报情况,并期待稍后分享更多细节。”

报道称,Altman 开出天价数字可能不仅包括晶圆厂本身的建设,还包括在它们周围建造一个全新的基础设施,包括发电厂等。

考虑到 Altman 是芯片行业新手,大家也好奇他从哪里算出的这个数字。5 万亿至 7 万亿美元到底有多夸张呢?

美国 GDP 大概是 23 万亿美元,这个数字相当于美国 GDP 的三分之一。就芯片行业来说,这个数字约为英伟达目前市值的 4 倍,也远远超过全球半导体行业估值——该行业去年的销售额为 5270 亿美元,预计到 2030 年将达到 1 万亿美元大关。

最近,硅谷芯片大神、“硅仙人”、Tenstorrent CTO Jim Keller 也在 X 上表达了他对 Altman 令人震惊的野心的“意见”,他强调,同样的工作,他可以以不到一万亿美元的价格完成。

图片

大神强调“不到”1万亿美元

图片

更早的时候,当Altman说为什么不把筹集的金额从7万亿美元提高到8万亿时,“硅仙人”就曾回复说,我只用不到1万亿美元就能做到。

Altman 的芯片计划本质上还是彻底扩张半导体供应链,以求在未来三到五年解决芯片供给短缺的问题,但也有可能导致代工产能过剩、芯片贬值等问题。Jim Keller 则认为重点不是制造更多的芯片,而是处理器的复杂性和简化硬件供应链(以降低 AI 服务器和其他设备成本)。
“从消除利润堆叠的地方开始,” Keller 写道。在为最终用户交付产品的过程中,为获取更多毛利,供应链中的参与者都在“层层加码”,在 Keller 看来,大概可以去掉两到三层的“堆叠环节”。接下来,为了让芯片运作更快,还要改善硬件与软件资源的匹配程度。当然,这点更难做到,但也不是不可行。

图片

他认为通过对供应链的某些改进以及改善硬件和软件资源,更有利于解决芯片问题。当然,这也是一项非常艰巨的任务。

图片

事实上,Jim Keller  所在的 Tenstorrent 就是一个“解题者”。他们有一个非常雄心勃勃的路线图,旨在迅速改进现有的基于 AI 的芯片架构,包括基于 RISC-V 的高性能 CPU chiplet 和先进的 AI 加速器 chiplet,为机器学习提供强大的解决方案。

其中,CPU 是 Tenstorrent 的重头戏——在 AI 计算中,CPU 扮演着非常非常重要的角色,尤其是在训练方面。数据中心 AI 训练过程中,CPU 所占的时间和功耗都超过了 50%,包括 CPU 对数据的预处理和后处理。

Jim Keller  也是这家公司的天使投资人, 用他的话说,Tenstorrent 的设计是“最有前途的架构”。

对 AI 性能的需求正在快速增长,只有时间才能证明 Tenstorrent 和其他公司是否会在可预见的未来赶上它。

图片该公司雄心勃勃的路线图

Altman 的想法并没有得到业内人士的欢迎,不少人认为他的主张不可行。就在最近,英伟达 CEO 黄仁勋预测,AI 支持的数据中心市场将在未来五年内扩大到 2 万亿美元规模,并强调这样一个事实,即提高产能只是一方面,架构变革也很重要。

不需要太多投资来建立针对 AI 芯片的替代性半导体供应链。相反,业界需要继续进行 GPU 架构创新,提高性能——事实上,黄仁勋声称在过去十年中,英伟达已经将 AI 性能提高了 100 万倍。

芯片架构的性能将同时提高,你不能假设会购买更多的计算机。黄仁勋认为,“你还必须假设计算会变得更快,所以总体上,你不会需要那么多的芯片。”

图片

英伟达GPU 在 AI 和高性能计算 (HPC) 性能方面发展非常快。2018 年,Nvidia V100 数据中心 GPU 的半精度计算性能仅为 125 TFLOPS,但 H200 提供了 1,979 FP16 TFLOPS。未来计算机也将以更惊人的速度完成任务。

AI 芯片的短缺问题最终将得到解决,部分原因要归功于架构创新——创新使得那些想要在本地使用 AI 的公司不用再花费数十亿美元建造数据中心。


参考链接

https://www.tomshardware.com/tech-industry/artificial-intelligence/jim-keller-responds-to-sam-altmans-plan-to-raise-dollar7-billion-to-make-ai-chips

https://www.tomshardware.com/pc-components/gpus/nvidia-ceo-jensen-huang-says-dollar7-trillion-isnt-needed-for-ai-cites-1-million-fold-improvement-in-ai-performance-in-the-last-ten-years

产业OpenAIAI 芯片技术英伟达
相关数据
机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

堆叠技术

堆叠泛化是一种用于最小化一个或多个泛化器的泛化误差率的方法。它通过推导泛化器相对于所提供的学习集的偏差来发挥其作用。这个推导的过程包括:在第二层中将第一层的原始泛化器对部分学习集的猜测进行泛化,以及尝试对学习集的剩余部分进行猜测,并且输出正确的结果。当与多个泛化器一起使用时,堆叠泛化可以被看作是一个交叉验证的复杂版本,利用比交叉验证更为复杂的策略来组合各个泛化器。当与单个泛化器一起使用时,堆叠泛化是一种用于估计(然后纠正)泛化器的错误的方法,该泛化器已经在特定学习集上进行了训练并被询问了特定问题。

推荐文章
暂无评论
暂无评论~